Earth Mover's Distance as a Metric to Evaluate the Extent of Charge Transfer in Excitations Using Discretized Real-Space Densities

This paper presents a novel theoretical measure, μEMD, based on the earth mover's distance (EMD), for quantifying the density shift caused by electronic excitations in molecules. As input, the EMD metric uses only the discretized ground- and excited-state electron densities in real space, rende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation Jg. 19; H. 21; S. 7704
Hauptverfasser: Wang, Zhe, Liang, Jiashu, Head-Gordon, Martin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 14.11.2023
ISSN:1549-9626, 1549-9626
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel theoretical measure, μEMD, based on the earth mover's distance (EMD), for quantifying the density shift caused by electronic excitations in molecules. As input, the EMD metric uses only the discretized ground- and excited-state electron densities in real space, rendering it compatible with almost all electronic structure methods used to calculate excited states. The EMD metric is compared against other popular theoretical metrics for describing the extent of electron-hole separation in a wide range of excited states (valence, Rydberg, charge transfer, etc.). The results showcase the EMD metric's effectiveness across all excitation types and suggest that it is useful as an additional tool to characterize electronic excitations. The study also reveals that μEMD can function as a promising diagnostic tool for predicting the failure of pure exchange-correlation functionals. Specifically, we show statistical relationships among the functional-driven errors, the exact exchange content within the functional, and the magnitude of μEMD values.This paper presents a novel theoretical measure, μEMD, based on the earth mover's distance (EMD), for quantifying the density shift caused by electronic excitations in molecules. As input, the EMD metric uses only the discretized ground- and excited-state electron densities in real space, rendering it compatible with almost all electronic structure methods used to calculate excited states. The EMD metric is compared against other popular theoretical metrics for describing the extent of electron-hole separation in a wide range of excited states (valence, Rydberg, charge transfer, etc.). The results showcase the EMD metric's effectiveness across all excitation types and suggest that it is useful as an additional tool to characterize electronic excitations. The study also reveals that μEMD can function as a promising diagnostic tool for predicting the failure of pure exchange-correlation functionals. Specifically, we show statistical relationships among the functional-driven errors, the exact exchange content within the functional, and the magnitude of μEMD values.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9626
1549-9626
DOI:10.1021/acs.jctc.3c00894