Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models
Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model...
Uloženo v:
| Vydáno v: | Water resources research Ročník 57; číslo 9 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.09.2021
|
| Témata: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!