Randomly generating three-dimensional realistic schistous sand particles using deep learning: Variational autoencoder implementation

Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the round-grained quartz sand in terms of composition, grading, and mechanical properties. In this paper, the variational-autoencoder (VAE), a generative dee...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering geology Ročník 291; s. 106235
Hlavní autoři: Shi, Jia-jie, Zhang, Wei, Wang, Wei, Sun, Yun-han, Xu, Chuan-yi, Zhu, Hong-hu, Sun, Zheng-xing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 20.09.2021
Témata:
ISSN:0013-7952, 1872-6917
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the round-grained quartz sand in terms of composition, grading, and mechanical properties. In this paper, the variational-autoencoder (VAE), a generative deep-learning model, was used to randomly generate realistic three-dimensional (3D) schistous sand particles. A training set was developed based on a micro-computed tomography scanned image sequence of the specimens of Nanjing sand. A total of 30,000 particles were chosen as the training set. Two thousand realistic 3D schistous sand particles were randomly generated by the trained VAE model and statistically compared with all the natural sand particles. The agreement of the statistical distribution and parameters between the generated and natural schistous sand particles confirmed the generative fidelity of the trained VAE model. Also, the validity and controllability of the generation is testified by the addition of Gaussian random noise and conducting linear interpolation to the latent variables. This methodology not only can be used for the clump template of the DEM, but also holds the potential of generating other geological entities and modeling complicated engineering geological processes. •The variational autoencoder is used to generate 3D realistic schistous sand particles.•The validity and fidelity of the generated particles is verified by statistical comparison.•Gaussian random noises and linear interpolation can approach expected micromorphology.•Statistical assumption and parameter estimation can be avoided when using the VAE model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-7952
1872-6917
DOI:10.1016/j.enggeo.2021.106235