Learning Program Models from Generated Inputs

Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of autom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) s. 245 - 247
Hlavní autor: Mammadov, Tural
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2023
Témata:
ISSN:2574-1934
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of automatically learning such predictive and reversible models from programs needs to be solved. This work introduces a generic approach for automated and reversible program behavior modeling. It achieves 94% of overall accuracy in the conversion of Markdown-to-HTML and HTML-to-Markdown markups.
AbstractList Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of automatically learning such predictive and reversible models from programs needs to be solved. This work introduces a generic approach for automated and reversible program behavior modeling. It achieves 94% of overall accuracy in the conversion of Markdown-to-HTML and HTML-to-Markdown markups.
Author Mammadov, Tural
Author_xml – sequence: 1
  givenname: Tural
  surname: Mammadov
  fullname: Mammadov, Tural
  email: tural.mammadov@cispa.de
  organization: Saarland University,CISPA Helmholtz Center for Information Security,Saarbrücken,Germany
BookMark eNotzLFOwzAQgGGDQKKUvgFDJraEs8-xcyOKSolUBBIwV-fkUgU1TuWUgbcHCaZ_-fRfq4s4RVHqTkOhNdB9U7-t83oajxyHKZaVq6rCgMECAJw7UyvyVGEJaIxDf64WpvQ214T2Sq3m-fOXoQG05Bcq3wqnOMR99pqmfeIxe546OcxZn6Yx20iUxCfpsiYev07zjbrs-TDL6r9L9fG4fq-f8u3LpqkftjmjM6fcE_jgrLddb7jU2gn5QH0IviUGZwO3JG2HIUDokNBxRawB27YMwsHjUt3-fQcR2R3TMHL63mnQ3pTk8AfWNkoZ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSE-Companion58688.2023.00066
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350322637
EISSN 2574-1934
EndPage 247
ExternalDocumentID 10172596
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-a362t-7907b6474df2a5116e97b9fbb7c9a064bac9ecd3bb0bd3936a89a103cc5beab73
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001032641300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:21:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a362t-7907b6474df2a5116e97b9fbb7c9a064bac9ecd3bb0bd3936a89a103cc5beab73
OpenAccessLink https://figshare.com/articles/conference_contribution/Learning_Program_Models_from_Generated_Inputs/24614748
PageCount 3
ParticipantIDs ieee_primary_10172596
PublicationCentury 2000
PublicationDate 2023-May
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May
PublicationDecade 2020
PublicationTitle Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online)
PublicationTitleAbbrev ICSE-COMPANION
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203497
ssib051921307
Score 2.2265
Snippet Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs....
SourceID ieee
SourceType Publisher
StartPage 245
SubjectTerms Behavioral sciences
deep learning
Machine learning
Machine translation
Predictive models
Reverse engineering
security testing
Software
Software engineering
software testing
Title Learning Program Models from Generated Inputs
URI https://ieeexplore.ieee.org/document/10172596
WOSCitedRecordID wos001032641300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8NAEIYHW0Q8qVjxmxzE29p0N8lmz6XFgpSCCr2V2c2sCJKWNvX3u5Ok6sWDt3xcMskm82523mcA7qwK07UYlfB5mojEplKYIFuFkYS5c5oor43CT3o6zedzM2vN6rUXhojq4jN64M16Lb9Yui3_Kuvz8AlyPetAR-usMWvtBk_KYK8d24o_w0oyekUfwH3L1exPhs8j0bxmIeY0z3Ku7ZKMOI2ZkvirvUqdXcZH_7yuY-j9-PSi2XcGOoE9Kk9BtMjUNz7FtVcR9zv72ETsJIkazHSQmdGkXG2rTQ9ex6OX4aNomyIIDLmmEjrMZm2W6KTwEoNayshoa7y12hkM-sKiM-QKZW1sC2VUhrnBQaycSy2h1eoMuuWypHOIvFToDUpKtUx4Rw3QF548hpztEC-gx7EuVg33YrEL8_KP41dwyLezKQe8hm613tIN7LvP6n2zvq2f1hfa65V1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIZPUBAwAaKofGdAbKapncTxXLVqRakqUaRu1dmxERJKqzbl9-NLUmBhYMvHkkuc3Ov43ucA7rXw07UQBXNpHLFIx5wpL1uZ4hZTY6S1aWkUHsnxOJ3N1KQ2q5deGGttWXxmH2mzXMvPFmZDv8raNHy8XE92YS-OIh5Wdq3t8IkJ7bWlW9GHWHCCr8gDeKjJmu1h96XHqhfNRx2nSUrVXZwgpyFxEn81WCnzS__4n1d2As0fp14w-c5Bp7Bj8zNgNTT1jU5R9VVAHc8-1gF5SYIKNO2FZjDMl5ti3YTXfm_aHbC6LQJDn20KJv18VieRjDLH0eulxCqpldNaGoVeYWg0yppMaB3qTCiRYKqwEwpjYm1RS3EOjXyR2xYEjgt0CrmNJY9oR3TQZc469FnbIF5Ak2KdLyvyxXwb5uUfx-_gcDB9Hs1Hw_HTFRzRra2KA6-hUaw29gb2zWfxvl7dlk_uC9QzmLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=Learning+Program+Models+from+Generated+Inputs&rft.au=Mammadov%2C+Tural&rft.date=2023-05-01&rft.pub=IEEE&rft.eissn=2574-1934&rft.spage=245&rft.epage=247&rft_id=info:doi/10.1109%2FICSE-Companion58688.2023.00066&rft.externalDocID=10172596