Learning Program Models from Generated Inputs
Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of autom...
Uložené v:
| Vydané v: | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) s. 245 - 247 |
|---|---|
| Hlavný autor: | |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2023
|
| Predmet: | |
| ISSN: | 2574-1934 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of automatically learning such predictive and reversible models from programs needs to be solved. This work introduces a generic approach for automated and reversible program behavior modeling. It achieves 94% of overall accuracy in the conversion of Markdown-to-HTML and HTML-to-Markdown markups. |
|---|---|
| AbstractList | Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of automatically learning such predictive and reversible models from programs needs to be solved. This work introduces a generic approach for automated and reversible program behavior modeling. It achieves 94% of overall accuracy in the conversion of Markdown-to-HTML and HTML-to-Markdown markups. |
| Author | Mammadov, Tural |
| Author_xml | – sequence: 1 givenname: Tural surname: Mammadov fullname: Mammadov, Tural email: tural.mammadov@cispa.de organization: Saarland University,CISPA Helmholtz Center for Information Security,Saarbrücken,Germany |
| BookMark | eNotzLFOwzAQgGGDQKKUvgFDJraEs8-xcyOKSolUBBIwV-fkUgU1TuWUgbcHCaZ_-fRfq4s4RVHqTkOhNdB9U7-t83oajxyHKZaVq6rCgMECAJw7UyvyVGEJaIxDf64WpvQ214T2Sq3m-fOXoQG05Bcq3wqnOMR99pqmfeIxe546OcxZn6Yx20iUxCfpsiYev07zjbrs-TDL6r9L9fG4fq-f8u3LpqkftjmjM6fcE_jgrLddb7jU2gn5QH0IviUGZwO3JG2HIUDokNBxRawB27YMwsHjUt3-fQcR2R3TMHL63mnQ3pTk8AfWNkoZ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSE-Companion58688.2023.00066 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350322637 |
| EISSN | 2574-1934 |
| EndPage | 247 |
| ExternalDocumentID | 10172596 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-a362t-7907b6474df2a5116e97b9fbb7c9a064bac9ecd3bb0bd3936a89a103cc5beab73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001032641300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:21:00 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a362t-7907b6474df2a5116e97b9fbb7c9a064bac9ecd3bb0bd3936a89a103cc5beab73 |
| OpenAccessLink | https://figshare.com/articles/conference_contribution/Learning_Program_Models_from_Generated_Inputs/24614748 |
| PageCount | 3 |
| ParticipantIDs | ieee_primary_10172596 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) |
| PublicationTitleAbbrev | ICSE-COMPANION |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203497 ssib051921307 |
| Score | 2.2266011 |
| Snippet | Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 245 |
| SubjectTerms | Behavioral sciences deep learning Machine learning Machine translation Predictive models Reverse engineering security testing Software Software engineering software testing |
| Title | Learning Program Models from Generated Inputs |
| URI | https://ieeexplore.ieee.org/document/10172596 |
| WOSCitedRecordID | wos001032641300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1sEfGkYsVvchBva5Nsdjd7Li0WpBRU6K3sx0QESUub-PvdSVL14sFb2Fx2sh_zNvveG4C7sN3lQqFnGSaCZdxwpo1IWYKYJgaJ990IhZ_UbJYvFnreidUbLQwiNuQzfKDH5i7fr1xNv8qGNH0CXJc96CklW7HWbvIIMvbaeVvRNsxTsl5RB3Df-WoOp6PnMWuXWYhZ5DInbldKFqcxuST-Kq_SZJfJ0T_7dQyDH51eNP_OQCewh-UpsM4y9Y1eEfcqonpnH9uIlCRRazMdYGY0Ldd1tR3A62T8MnpkXVEEZkKuqZgKp1krM5X5IjUBLUnUyurCWuW0CfjCGqfReW5tbD3XXJpcmyTmzgmLxip-Bv1yVeI5RD5gIZe4WPmAinTqLKYBDhQy98aKIjEXMKBYl-vW92K5C_Pyj_YrOKTP2dIBr6FfbWq8gX33Wb1vN7fNaH0Bw3eU0w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQcAEiCK-yYDYTJM4juO5ompFqSpRpG6VPy4ICaVVm_L78SUpsDCwRc7iiz_uOX7vHcCd3-4yIdGxBCPBEq45U1rELEKMI43E-66EwkM5GmXTqRo3YvVKC4OIFfkMH-ixust3c7umX2Udmj4erqfbsCOSJA5rudZm-giy9tq4W9FGzGMyX5F7cN84a3YG3ZdHVi80H7XI0ozYXTGZnIbkk_irwEqVX3qH_-zZEbR_lHrB-DsHHcMWFifAGtPUN3pF7KuAKp59rALSkgS10bQHmsGgWKzLVRtee4-Tbp81ZRGY9tmmZNKfZ02ayMTlsfZ4KUUljcqNkVZpjzCMtgqt48aExnHFU50pHYXcWmFQG8lPoVXMCzyDwHk0ZCMbSudxkYqtwdgDgjzNnDYij_Q5tCnW2aJ2vphtwrz4o_0W9vuT5-FsOBg9XcIBfdqaHHgFrXK5xmvYtZ_l-2p5U43cF7VjmBo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=Learning+Program+Models+from+Generated+Inputs&rft.au=Mammadov%2C+Tural&rft.date=2023-05-01&rft.pub=IEEE&rft.eissn=2574-1934&rft.spage=245&rft.epage=247&rft_id=info:doi/10.1109%2FICSE-Companion58688.2023.00066&rft.externalDocID=10172596 |