Wetting-induced collapse of loess: Tracing microstructural evolution
Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularl...
Saved in:
| Published in: | Engineering geology Vol. 340; p. 107673 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2024
|
| Subjects: | |
| ISSN: | 0013-7952 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularly the widespread occurrences of settlement, deformation and cracking of civil engineering structures. Differing from the existing investigations based on pre- and post-collapse comparison, the present study is to report the microstructural changes during the collapse process and to determine how each microstructural constitutive element participates in this process. A series of laboratory tests was conducted on undisturbed loess specimens to simulate and capture snapshots of microstructure at five representative points during the entire collapse process. Results show that the loess microstructure becomes more homogeneous as the outstanding macropores are crushed into smaller (meso- and mini-pores) pores, the number of pores is dramatically increased, and the pore throats become narrower. The pore shapes have no obvious changes and remain elongated and rough-edged morphology from the point of view of statistic. Regarding solids, the pre-collapse unstable point-to-point contacts tend to transform into relatively stable edge (edge-edge or point-edge) type contacts, whilst coarse particles tend to reorient along the horizonal direction. XRD, SEM and EDS analysis indicates that these changes in the nature and distribution of pores and particles result from (1) the breakage and disintegration of moderately to highly weathered particles, (2) the disintegration of the matrix due to the swelling of clay minerals and the dissolution of calcium carbonates, (3) the consequential modifications of the microscopic forces which lead to slipping, rotation and therefore dislocation of particles, and (4) the collapse of mesoscale force chains along particles, reforming on smaller scales with larger numbers, shorter lengths and horizontal alignments.
[Display omitted]
•Systematic experimental microstructural study of wetting-driven loess collapse.•Tracing collapse mechanism with microstructure and roles of its elements.•Loess collapse results essentially from crushing of its macropores (> 32 μm).•Matrix changes with fragmentation, dissolution and swelling of the solids.•Particle force chains break as particles disintegrate, dislocate and/or rotate. |
|---|---|
| AbstractList | Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularly the widespread occurrences of settlement, deformation and cracking of civil engineering structures. Differing from the existing investigations based on pre- and post-collapse comparison, the present study is to report the microstructural changes during the collapse process and to determine how each microstructural constitutive element participates in this process. A series of laboratory tests was conducted on undisturbed loess specimens to simulate and capture snapshots of microstructure at five representative points during the entire collapse process. Results show that the loess microstructure becomes more homogeneous as the outstanding macropores are crushed into smaller (meso- and mini-pores) pores, the number of pores is dramatically increased, and the pore throats become narrower. The pore shapes have no obvious changes and remain elongated and rough-edged morphology from the point of view of statistic. Regarding solids, the pre-collapse unstable point-to-point contacts tend to transform into relatively stable edge (edge-edge or point-edge) type contacts, whilst coarse particles tend to reorient along the horizonal direction. XRD, SEM and EDS analysis indicates that these changes in the nature and distribution of pores and particles result from (1) the breakage and disintegration of moderately to highly weathered particles, (2) the disintegration of the matrix due to the swelling of clay minerals and the dissolution of calcium carbonates, (3) the consequential modifications of the microscopic forces which lead to slipping, rotation and therefore dislocation of particles, and (4) the collapse of mesoscale force chains along particles, reforming on smaller scales with larger numbers, shorter lengths and horizontal alignments. Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularly the widespread occurrences of settlement, deformation and cracking of civil engineering structures. Differing from the existing investigations based on pre- and post-collapse comparison, the present study is to report the microstructural changes during the collapse process and to determine how each microstructural constitutive element participates in this process. A series of laboratory tests was conducted on undisturbed loess specimens to simulate and capture snapshots of microstructure at five representative points during the entire collapse process. Results show that the loess microstructure becomes more homogeneous as the outstanding macropores are crushed into smaller (meso- and mini-pores) pores, the number of pores is dramatically increased, and the pore throats become narrower. The pore shapes have no obvious changes and remain elongated and rough-edged morphology from the point of view of statistic. Regarding solids, the pre-collapse unstable point-to-point contacts tend to transform into relatively stable edge (edge-edge or point-edge) type contacts, whilst coarse particles tend to reorient along the horizonal direction. XRD, SEM and EDS analysis indicates that these changes in the nature and distribution of pores and particles result from (1) the breakage and disintegration of moderately to highly weathered particles, (2) the disintegration of the matrix due to the swelling of clay minerals and the dissolution of calcium carbonates, (3) the consequential modifications of the microscopic forces which lead to slipping, rotation and therefore dislocation of particles, and (4) the collapse of mesoscale force chains along particles, reforming on smaller scales with larger numbers, shorter lengths and horizontal alignments. [Display omitted] •Systematic experimental microstructural study of wetting-driven loess collapse.•Tracing collapse mechanism with microstructure and roles of its elements.•Loess collapse results essentially from crushing of its macropores (> 32 μm).•Matrix changes with fragmentation, dissolution and swelling of the solids.•Particle force chains break as particles disintegrate, dislocate and/or rotate. |
| ArticleNumber | 107673 |
| Author | Wang, Yuanyuan Li, Yanrong |
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan – sequence: 2 givenname: Yanrong surname: Li fullname: Li, Yanrong email: liyanrong@tyut.edu.cn |
| BookMark | eNqFkD1PwzAQhj0UiRb4BwwZWVL8maQdkFD5lCqxFDFaV-dSuUrtYjuV-PckChMDTKc7vc_p1TMjE-cdEnLN6JxRVtzu5-h2O_RzTrnsT2VRigmZUspEXi4UPyezGPfDSmk5JQ8fmJJ1u9y6ujNYZ8a3LRwjZr7JWo8xLrNNANNHsoM1wccUOpO6AG2GJ992yXp3Sc4aaCNe_cwL8v70uFm95Ou359fV_ToHUfCUF4obhAJ4VYEEahgvlAHZyGqrUGKjgBVKSo7bBpisKNYLarhppFCUowBxQW7Gv8fgPzuMSR9sNNgXdui7qAVTohSVFKyPLsfoUDkGbLSxCYayKYBtNaN60KX3etSlB1161NXD8hd8DPYA4es_7G7EsHdwshh0NBZdb9UGNEnX3v794BvWrItL |
| CitedBy_id | crossref_primary_10_1016_j_enggeo_2024_107742 crossref_primary_10_1016_j_still_2025_106548 crossref_primary_10_1016_j_enggeo_2024_107837 crossref_primary_10_1016_j_jseaes_2025_106726 crossref_primary_10_1007_s10706_025_03288_8 crossref_primary_10_1016_j_enggeo_2025_108350 crossref_primary_10_1016_j_enggeo_2024_107892 |
| Cites_doi | 10.1061/(ASCE)GT.1943-5606.0002025 10.1016/j.jrmge.2015.12.002 10.2136/sssaj1973.03615995003700020033x 10.1016/j.enggeo.2023.107213 10.1016/j.enggeo.2008.12.002 10.1016/1040-6182(94)90036-1 10.1016/j.catena.2020.104585 10.1038/nature03805 10.1103/PhysRevE.72.041307 10.1139/cgj-2015-0285 10.1016/j.earscirev.2023.104665 10.1061/(ASCE)GM.1943-5622.0002609 10.1016/j.gete.2019.100177 10.1016/j.enggeo.2017.11.025 10.1016/j.quaint.2016.09.058 10.1016/j.earscirev.2019.102947 10.1007/s12665-019-8331-z 10.1016/0169-1317(89)90040-9 10.1016/j.enggeo.2018.12.024 10.1016/0013-7952(94)90045-0 10.1016/j.catena.2021.105206 10.1016/0013-7952(88)90024-5 10.1016/j.quaint.2005.12.002 10.1007/s10064-014-0694-5 10.1016/j.catena.2022.106273 10.1016/0013-7952(88)90029-4 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enggeo.2024.107673 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enggeo_2024_107673 S0013795224002734 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABWVN ABXDB ACDAQ ACGFS ACLVX ACNCT ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SET SEW SPC SPCBC SSE SSZ T5K TN5 VH1 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- 9DU AATTM AAYWO AAYXX ABUFD ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a362t-652cea6a288a4a0c1265ca4f48b5e4ef5a165442ebfa1480ed90c2cf43502e3a3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001295736800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-7952 |
| IngestDate | Sat Sep 27 19:04:06 EDT 2025 Sat Nov 29 05:53:14 EST 2025 Tue Nov 18 22:42:47 EST 2025 Sat Dec 14 16:15:47 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structural evolution Metastable microstructure Material alteration Hydroconsolidation model Force chain |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a362t-652cea6a288a4a0c1265ca4f48b5e4ef5a165442ebfa1480ed90c2cf43502e3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.enggeo.2024.107673 |
| PQID | 3153738431 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153738431 crossref_citationtrail_10_1016_j_enggeo_2024_107673 crossref_primary_10_1016_j_enggeo_2024_107673 elsevier_sciencedirect_doi_10_1016_j_enggeo_2024_107673 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering geology |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – sequence: 0 name: Elsevier B.V |
| References | Li, Li, Song, Hong, Wang, Sun (bb0070) 2019; 249 Lu, Zhang (bb0095) 2019; 145 Yuan, Wang (bb0195) 2009; 105 Gao (bb0040) 1988; 25 Handy (bb0050) 1973; 37 Standardization Administration of China (SAC), Ministry of Construction (bb0145) 2004 Wei, Fan, Fu, Yu (bb0180) 2023; 23 Grabowska-Olszewska (bb0045) 1989; 4 Rogers, Dijkstra, Smalley (bb0125) 1994; 37 Wei, Fan, Yuan, Wei, Yu (bb0165) 2019; 78 Zhang, Li, Wang, Beroya-Eitner (bb0080) 2022; 214 Derbyshire, Mellors (bb0025) 1988; 25 Wei, Fan, Zhou, Deng, Wu, Wei (bb0175) 2023; 323 Milodowski, Northmore, Kemp (bb0105) 2015; 74 Smalley, Mavlyanova, Rakhmatullaev, Shermatov, Machalettc, O’Hara Dhand, Jefferson (bb0140) 2006; 152–153 Rogers (bb0120) 1995 Li, Shi, Aydin, Beroya-Eitner, Gao (bb0075) 2020; 201 Santamarina (bb0130) 2003 Sun (bb0150) 2005 ASTM (bb0015) 2006 Liu, Liu, Ma, Wang, Bai, Zheng, Yin, Zhang (bb0090) 2016; 53 Peters, Muthuswamy, Wibowo, Tordesillas (bb0115) 2005; 72 Li, Vanapalli, Li (bb0065) 2016; 8 Yu, Fan, Dijkstra, Wei, Deng (bb0190) 2021; 201 Shao, Zhang, Tan (bb0135) 2018; 233 Assadi-Langroudi, Ng’ambi, Smalley (bb0010) 2018; 469 Zheng (bb0205) 1982 Delage, Tessier (bb0020) 2021; 27 Wei, Fan, Yu, Deng, Wei (bb0170) 2020; 192 Lei (bb0060) 1987; 5 Zhang, Fan, Li, He, Guo (bb0200) 2022; 2022 Fan, Wei, Yu, Deng, Yu (bb0030) 2022; 49 Yang (bb0185) 1988; 7 Wang, Li, Li, Hong, Yao, Lei, Zhang (bb0160) 2020; 9 Osipov, Sokolov (bb0110) 1995 Assadi-Langroudi (bb0005) 2014 Majmudar, Behringer (bb0100) 2005; 435 Sun, Xin, Liu, Jin (bb0155) 2009; S1 Gao (bb0035) 1981; 7 Li, Wang, Aydin (bb0085) 2024; 249 Klukanova, Sajgalik (bb0055) 1994; 24 Derbyshire (10.1016/j.enggeo.2024.107673_bb0025) 1988; 25 Peters (10.1016/j.enggeo.2024.107673_bb0115) 2005; 72 Standardization Administration of China (SAC), Ministry of Construction (10.1016/j.enggeo.2024.107673_bb0145) 2004 Sun (10.1016/j.enggeo.2024.107673_bb0155) 2009; S1 Rogers (10.1016/j.enggeo.2024.107673_bb0125) 1994; 37 Yu (10.1016/j.enggeo.2024.107673_bb0190) 2021; 201 Yuan (10.1016/j.enggeo.2024.107673_bb0195) 2009; 105 Smalley (10.1016/j.enggeo.2024.107673_bb0140) 2006; 152–153 ASTM (10.1016/j.enggeo.2024.107673_bb0015) 2006 Handy (10.1016/j.enggeo.2024.107673_bb0050) 1973; 37 Zheng (10.1016/j.enggeo.2024.107673_bb0205) 1982 Li (10.1016/j.enggeo.2024.107673_bb0065) 2016; 8 Wang (10.1016/j.enggeo.2024.107673_bb0160) 2020; 9 Li (10.1016/j.enggeo.2024.107673_bb0070) 2019; 249 Shao (10.1016/j.enggeo.2024.107673_bb0135) 2018; 233 Majmudar (10.1016/j.enggeo.2024.107673_bb0100) 2005; 435 Delage (10.1016/j.enggeo.2024.107673_bb0020) 2021; 27 Osipov (10.1016/j.enggeo.2024.107673_bb0110) 1995 Zhang (10.1016/j.enggeo.2024.107673_bb0200) 2022; 2022 Assadi-Langroudi (10.1016/j.enggeo.2024.107673_bb0005) 2014 Assadi-Langroudi (10.1016/j.enggeo.2024.107673_bb0010) 2018; 469 Fan (10.1016/j.enggeo.2024.107673_bb0030) 2022; 49 Wei (10.1016/j.enggeo.2024.107673_bb0175) 2023; 323 Klukanova (10.1016/j.enggeo.2024.107673_bb0055) 1994; 24 Lu (10.1016/j.enggeo.2024.107673_bb0095) 2019; 145 Gao (10.1016/j.enggeo.2024.107673_bb0040) 1988; 25 Yang (10.1016/j.enggeo.2024.107673_bb0185) 1988; 7 Zhang (10.1016/j.enggeo.2024.107673_bb0080) 2022; 214 Li (10.1016/j.enggeo.2024.107673_bb0085) 2024; 249 Wei (10.1016/j.enggeo.2024.107673_bb0170) 2020; 192 Wei (10.1016/j.enggeo.2024.107673_bb0180) 2023; 23 Liu (10.1016/j.enggeo.2024.107673_bb0090) 2016; 53 Rogers (10.1016/j.enggeo.2024.107673_bb0120) 1995 Grabowska-Olszewska (10.1016/j.enggeo.2024.107673_bb0045) 1989; 4 Santamarina (10.1016/j.enggeo.2024.107673_bb0130) 2003 Lei (10.1016/j.enggeo.2024.107673_bb0060) 1987; 5 Li (10.1016/j.enggeo.2024.107673_bb0075) 2020; 201 Gao (10.1016/j.enggeo.2024.107673_bb0035) 1981; 7 Wei (10.1016/j.enggeo.2024.107673_bb0165) 2019; 78 Sun (10.1016/j.enggeo.2024.107673_bb0150) 2005 Milodowski (10.1016/j.enggeo.2024.107673_bb0105) 2015; 74 |
| References_xml | – year: 2005 ident: bb0150 article-title: Loess – volume: 2022 start-page: 1 year: 2022 end-page: 11 ident: bb0200 article-title: Water-induced disintegration behaviour of Malan loess publication-title: Earth Surf. Process. Landf. – volume: 7 start-page: 962 year: 1981 end-page: 974 ident: bb0035 article-title: Classification of microstructure of loess in China and their collapsibility publication-title: Sci. Sinica – volume: 25 start-page: 135 year: 1988 end-page: 175 ident: bb0025 article-title: Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: a comparison publication-title: Eng. Geol. – volume: 214 year: 2022 ident: bb0080 article-title: A model for the formation and evolution of structure of initial loess deposits publication-title: Catena – volume: 8 start-page: 256 year: 2016 end-page: 274 ident: bb0065 article-title: Review of collapse triggering mechanism of collapsible soils due to wetting publication-title: J. Rock Mech. Geotech. Eng. – volume: 49 start-page: 13 year: 2022 ident: bb0030 article-title: Research progress and prospect of loess collapsible mechanism in micro-level publication-title: Hydrogeol. Eng. Geol. – volume: 152–153 start-page: 59 year: 2006 end-page: 69 ident: bb0140 article-title: The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion publication-title: Quat. Int. – volume: 27 year: 2021 ident: bb0020 article-title: Macroscopic effects of nano and microscopic phenomena in clayey soils and clay rocks publication-title: Geomech. Energy Env. – volume: 201 year: 2020 ident: bb0075 article-title: Loess genesis and worldwide distribution publication-title: Earth Sci. Rev. – volume: 4 start-page: 327 year: 1989 end-page: 336 ident: bb0045 article-title: Skeletal microstructure of loesses – its significance for engineering-geological and geotechnical studies publication-title: Appl. Clay Sci. – volume: 72 year: 2005 ident: bb0115 article-title: Characterization of force chains in granular material publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 7 start-page: 756 year: 1988 end-page: 766 ident: bb0185 article-title: Study on collapsible mechanism of loess soils publication-title: Chi. Sci. – year: 2014 ident: bb0005 article-title: Micromechanics of Collapse in Loess – volume: 78 start-page: 333 year: 2019 end-page: 348 ident: bb0165 article-title: Three-dimensional pore network characterization of loess and paleosol stratigraphy from south Jingyang plateau, China publication-title: Environ. Earth Sci. – volume: 323 year: 2023 ident: bb0175 article-title: Quantification of the spatial-temporal evolution of loess microstructure from the Dongzhi tableland during shearing publication-title: Eng. Geol. – volume: 25 start-page: 235 year: 1988 end-page: 245 ident: bb0040 article-title: Formation and development of the structure of collapsing loess in China publication-title: Eng. Geol. – start-page: 1 year: 1995 end-page: 17 ident: bb0120 article-title: Types and distribution of collapsible soil publication-title: Genesis and Properties of Collapsible Soils – volume: 233 start-page: 11 year: 2018 end-page: 22 ident: bb0135 article-title: Collapse behavior and microstructural alteration of remolded loess under graded wetting tests publication-title: Eng. Geol. – volume: 24 start-page: 35 year: 1994 end-page: 39 ident: bb0055 article-title: Changes in loess fabric caused by collapse: an experimental study publication-title: Quat. Int. – volume: 37 start-page: 83 year: 1994 end-page: 113 ident: bb0125 article-title: Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe publication-title: Eng. Geol. – volume: 192 year: 2020 ident: bb0170 article-title: Characterization and evolution of three-dimensional microstructure of Malan loess publication-title: Catena – volume: 23 start-page: 06022036 year: 2023 ident: bb0180 article-title: Experimental investigation of the hydration swelling effect of clay minerals on loess collapsibility publication-title: Int. J. Geomech. – volume: 249 start-page: 77 year: 2019 end-page: 88 ident: bb0070 article-title: Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective publication-title: Eng. Geol. – year: 2003 ident: bb0130 article-title: Soil behavior at the microscale: Particle forces publication-title: Soil Behavior and Soft Ground Construction – volume: 9 year: 2020 ident: bb0160 article-title: Characterization of the collapsible mechanisms of Malan loess on the Chinese Loess Plateau and their effects on eroded loess landforms publication-title: Ecol. Risk Assess. – volume: S1 start-page: 5 year: 2009 ident: bb0155 article-title: Skeleton and force chain network in static granular material publication-title: Rock Soil Mech. – volume: 53 start-page: 673 year: 2016 end-page: 686 ident: bb0090 article-title: Collapsibility, composition, and microstructure of loess in China publication-title: Can. Geotech. J. – year: 2004 ident: bb0145 article-title: China National Standards GB50025–2004: Standard for Building Construction in Collapsible Loess Regions – volume: 201 year: 2021 ident: bb0190 article-title: Heterogeneous evolution of pore structure during loess collapse: Insights from X-ray micro-computed tomography publication-title: Catena – volume: 105 start-page: 119 year: 2009 end-page: 123 ident: bb0195 article-title: Collapsibility and seismic settlement of loess publication-title: Eng. Geol. – year: 2006 ident: bb0015 article-title: Annual Book of ASTM Standards – volume: 74 start-page: 1187 year: 2015 ident: bb0105 article-title: The mineralogy and fabric of‘Brickearths’ (loess) in Kent, UK and their relationship to engineering behaviour publication-title: Bull. Eng. Geol. Environ. – volume: 249 year: 2024 ident: bb0085 article-title: Loess structure: Evolution and a scale-based classification publication-title: Earth Sci. Rev. – start-page: 49 year: 1995 end-page: 63 ident: bb0110 article-title: Factors and mechanism of loess collapsibility publication-title: Genesis and Properties of Collapsible Soils – volume: 5 start-page: 15 year: 1987 end-page: 18 ident: bb0060 article-title: Size of loess pores in relation to collapsibility publication-title: Hydrogeol. Eng. Geol. – volume: 469 start-page: 20 year: 2018 end-page: 29 ident: bb0010 article-title: Loess as a collapsible soil: some basic particle packing aspects publication-title: Quat. Int. – volume: 145 start-page: 04019006 year: 2019 ident: bb0095 article-title: Soil sorptive potential: concept, theory, and verification publication-title: Geotech. Geoenviron. Eng. – volume: 37 start-page: 281 year: 1973 end-page: 284 ident: bb0050 article-title: Collapsible loess in Lowa publication-title: Soil Sci. Soc. Am. J. – year: 1982 ident: bb0205 article-title: Collapsibility of Chinese Loess – volume: 435 start-page: 1079 year: 2005 end-page: 1082 ident: bb0100 article-title: Contact force measurements and stress-induced anisotropy in granular materials publication-title: Nature – year: 2003 ident: 10.1016/j.enggeo.2024.107673_bb0130 article-title: Soil behavior at the microscale: Particle forces – volume: 145 start-page: 04019006 issue: 4 year: 2019 ident: 10.1016/j.enggeo.2024.107673_bb0095 article-title: Soil sorptive potential: concept, theory, and verification publication-title: Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002025 – start-page: 1 year: 1995 ident: 10.1016/j.enggeo.2024.107673_bb0120 article-title: Types and distribution of collapsible soil – volume: 8 start-page: 256 year: 2016 ident: 10.1016/j.enggeo.2024.107673_bb0065 article-title: Review of collapse triggering mechanism of collapsible soils due to wetting publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2015.12.002 – volume: 37 start-page: 281 issue: 2 year: 1973 ident: 10.1016/j.enggeo.2024.107673_bb0050 article-title: Collapsible loess in Lowa publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1973.03615995003700020033x – year: 2004 ident: 10.1016/j.enggeo.2024.107673_bb0145 – volume: 323 year: 2023 ident: 10.1016/j.enggeo.2024.107673_bb0175 article-title: Quantification of the spatial-temporal evolution of loess microstructure from the Dongzhi tableland during shearing publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2023.107213 – volume: 105 start-page: 119 year: 2009 ident: 10.1016/j.enggeo.2024.107673_bb0195 article-title: Collapsibility and seismic settlement of loess publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.12.002 – volume: 7 start-page: 962 year: 1981 ident: 10.1016/j.enggeo.2024.107673_bb0035 article-title: Classification of microstructure of loess in China and their collapsibility publication-title: Sci. Sinica – volume: 24 start-page: 35 year: 1994 ident: 10.1016/j.enggeo.2024.107673_bb0055 article-title: Changes in loess fabric caused by collapse: an experimental study publication-title: Quat. Int. doi: 10.1016/1040-6182(94)90036-1 – volume: 192 year: 2020 ident: 10.1016/j.enggeo.2024.107673_bb0170 article-title: Characterization and evolution of three-dimensional microstructure of Malan loess publication-title: Catena doi: 10.1016/j.catena.2020.104585 – volume: 49 start-page: 13 issue: 5 year: 2022 ident: 10.1016/j.enggeo.2024.107673_bb0030 article-title: Research progress and prospect of loess collapsible mechanism in micro-level publication-title: Hydrogeol. Eng. Geol. – volume: 435 start-page: 1079 year: 2005 ident: 10.1016/j.enggeo.2024.107673_bb0100 article-title: Contact force measurements and stress-induced anisotropy in granular materials publication-title: Nature doi: 10.1038/nature03805 – volume: 72 year: 2005 ident: 10.1016/j.enggeo.2024.107673_bb0115 article-title: Characterization of force chains in granular material publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.72.041307 – volume: 53 start-page: 673 year: 2016 ident: 10.1016/j.enggeo.2024.107673_bb0090 article-title: Collapsibility, composition, and microstructure of loess in China publication-title: Can. Geotech. J. doi: 10.1139/cgj-2015-0285 – volume: 249 year: 2024 ident: 10.1016/j.enggeo.2024.107673_bb0085 article-title: Loess structure: Evolution and a scale-based classification publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2023.104665 – volume: 23 start-page: 06022036 issue: 1 year: 2023 ident: 10.1016/j.enggeo.2024.107673_bb0180 article-title: Experimental investigation of the hydration swelling effect of clay minerals on loess collapsibility publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0002609 – volume: 27 year: 2021 ident: 10.1016/j.enggeo.2024.107673_bb0020 article-title: Macroscopic effects of nano and microscopic phenomena in clayey soils and clay rocks publication-title: Geomech. Energy Env. doi: 10.1016/j.gete.2019.100177 – year: 2005 ident: 10.1016/j.enggeo.2024.107673_bb0150 – volume: S1 start-page: 5 year: 2009 ident: 10.1016/j.enggeo.2024.107673_bb0155 article-title: Skeleton and force chain network in static granular material publication-title: Rock Soil Mech. – year: 2006 ident: 10.1016/j.enggeo.2024.107673_bb0015 – volume: 233 start-page: 11 year: 2018 ident: 10.1016/j.enggeo.2024.107673_bb0135 article-title: Collapse behavior and microstructural alteration of remolded loess under graded wetting tests publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.11.025 – year: 2014 ident: 10.1016/j.enggeo.2024.107673_bb0005 – start-page: 49 year: 1995 ident: 10.1016/j.enggeo.2024.107673_bb0110 article-title: Factors and mechanism of loess collapsibility – volume: 7 start-page: 756 year: 1988 ident: 10.1016/j.enggeo.2024.107673_bb0185 article-title: Study on collapsible mechanism of loess soils publication-title: Chi. Sci. – volume: 469 start-page: 20 year: 2018 ident: 10.1016/j.enggeo.2024.107673_bb0010 article-title: Loess as a collapsible soil: some basic particle packing aspects publication-title: Quat. Int. doi: 10.1016/j.quaint.2016.09.058 – year: 1982 ident: 10.1016/j.enggeo.2024.107673_bb0205 – volume: 5 start-page: 15 year: 1987 ident: 10.1016/j.enggeo.2024.107673_bb0060 article-title: Size of loess pores in relation to collapsibility publication-title: Hydrogeol. Eng. Geol. – volume: 201 year: 2020 ident: 10.1016/j.enggeo.2024.107673_bb0075 article-title: Loess genesis and worldwide distribution publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.102947 – volume: 78 start-page: 333 year: 2019 ident: 10.1016/j.enggeo.2024.107673_bb0165 article-title: Three-dimensional pore network characterization of loess and paleosol stratigraphy from south Jingyang plateau, China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8331-z – volume: 4 start-page: 327 issue: 4 year: 1989 ident: 10.1016/j.enggeo.2024.107673_bb0045 article-title: Skeletal microstructure of loesses – its significance for engineering-geological and geotechnical studies publication-title: Appl. Clay Sci. doi: 10.1016/0169-1317(89)90040-9 – volume: 249 start-page: 77 year: 2019 ident: 10.1016/j.enggeo.2024.107673_bb0070 article-title: Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.12.024 – volume: 37 start-page: 83 year: 1994 ident: 10.1016/j.enggeo.2024.107673_bb0125 article-title: Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe publication-title: Eng. Geol. doi: 10.1016/0013-7952(94)90045-0 – volume: 201 year: 2021 ident: 10.1016/j.enggeo.2024.107673_bb0190 article-title: Heterogeneous evolution of pore structure during loess collapse: Insights from X-ray micro-computed tomography publication-title: Catena doi: 10.1016/j.catena.2021.105206 – volume: 25 start-page: 135 year: 1988 ident: 10.1016/j.enggeo.2024.107673_bb0025 article-title: Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: a comparison publication-title: Eng. Geol. doi: 10.1016/0013-7952(88)90024-5 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.enggeo.2024.107673_bb0200 article-title: Water-induced disintegration behaviour of Malan loess publication-title: Earth Surf. Process. Landf. – volume: 9 year: 2020 ident: 10.1016/j.enggeo.2024.107673_bb0160 article-title: Characterization of the collapsible mechanisms of Malan loess on the Chinese Loess Plateau and their effects on eroded loess landforms publication-title: Ecol. Risk Assess. – volume: 152–153 start-page: 59 issue: 3 year: 2006 ident: 10.1016/j.enggeo.2024.107673_bb0140 article-title: The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion publication-title: Quat. Int. doi: 10.1016/j.quaint.2005.12.002 – volume: 74 start-page: 1187 year: 2015 ident: 10.1016/j.enggeo.2024.107673_bb0105 article-title: The mineralogy and fabric of‘Brickearths’ (loess) in Kent, UK and their relationship to engineering behaviour publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-014-0694-5 – volume: 214 year: 2022 ident: 10.1016/j.enggeo.2024.107673_bb0080 article-title: A model for the formation and evolution of structure of initial loess deposits publication-title: Catena doi: 10.1016/j.catena.2022.106273 – volume: 25 start-page: 235 year: 1988 ident: 10.1016/j.enggeo.2024.107673_bb0040 article-title: Formation and development of the structure of collapsing loess in China publication-title: Eng. Geol. doi: 10.1016/0013-7952(88)90029-4 |
| SSID | ssj0013007 |
| Score | 2.481528 |
| Snippet | Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107673 |
| SubjectTerms | calcium clay deformation Force chain Hydroconsolidation model landforms loess macropores Material alteration Metastable microstructure microstructure porosity Structural evolution |
| Title | Wetting-induced collapse of loess: Tracing microstructural evolution |
| URI | https://dx.doi.org/10.1016/j.enggeo.2024.107673 https://www.proquest.com/docview/3153738431 |
| Volume | 340 |
| WOSCitedRecordID | wos001295736800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0013-7952 databaseCode: AIEXJ dateStart: 19950501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0013007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIAtaDnAAfEU5aUgcUOuUj9im1sFRcCh4lDE9mTNOs6KqiSr3W7Vn8_4kWw3FZQeuERRlFhWvmRmPJ4HIW_B16jHK05FowwV3pc0YKa1YkKKWoKCMjabUIeHejIx33Ljv2VsJ6DaVl9cmPl_RY3XEHZInb0B7mFQvIDnCB2PiB2P_wT-h4-hzBQX26uwuR9Jz5PL_rRDwRY96gtwwUnwK8TjpRqysf6GP89z2_DYr2sWvpv5kR8-yYrjFQqV1aX4nhgkcAztosuqMXsWmBhi1AZpucepMnJDWvJUXSnLO1w8VqkVyRVRnLwCJ7u-nc1imiUTu-vbNytfjzTSECfYh6Cd2DSKDaPYNMptss2UNCjJtve_HEy-rveOypQk38--T5iMUX1XZ_Mng2SkmqO9cfSA3M8LhWI_AX5Ibvn2Ebl3CcVj8nGEuuhRF11TRNTviwy6GIEuBtBPyPdPB0cfPtPcFYMCGhtntJLMeaiAaQ0CSrfHKulANEJPpRe-kRAS1ATz0wZwrVv62pSOuQbt4pJ5Dvwp2Wq71j8jhQETKrVqBY0QMNVGaqeBe2g4b2rNdwjvX411uWR86Fxyav8GZofQ4al5Kplyzf2qf-s2m33JnLP4KV3z5JsekkWpGLa6oPXdamk5KnLFNVrHz284mxfk7vpfeEm2EIx_Re6487Ofy8Xr_K39BrPahvY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wetting-induced+collapse+of+loess%3A+Tracing+microstructural+evolution&rft.jtitle=Engineering+geology&rft.au=Wang%2C+Yuanyuan&rft.au=Li%2C+Yanrong&rft.date=2024-10-01&rft.issn=0013-7952&rft.volume=340&rft.spage=107673&rft_id=info:doi/10.1016%2Fj.enggeo.2024.107673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enggeo_2024_107673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon |