Displacement reconstruction from measured accelerations and accuracy control of integration based on a low-frequency attenuation algorithm

This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element sim...

Full description

Saved in:
Bibliographic Details
Published in:Soil dynamics and earthquake engineering (1984) Vol. 133; p. 106122
Main Authors: Zhu, Hao, Zhou, Yingjie, Hu, Yumei
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.06.2020
Elsevier BV
Subjects:
ISSN:0267-7261, 1879-341X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element simulation is conducted to compare the integral accuracy of this algorithm with those of several other conventional integration algorithms and then the superiority of the LFA algorithm is verified. At the same time, a numerical study and a vibration test rig with limit positions of impact are designed to investigate the influence of the ACF on integration accuracy for the LFA algorithm. Besides, three error evaluation indices are proposed to evaluate the integration accuracy. The investigations indicate that the determination of the value of the ACF should fully consider the level of low frequency noise, and it is better to select a relatively large value to ensure a good effect of eliminating the trend error and/or drift error. According to this research, the value of the ACF is suggested to be selected in the range from 0.90 to 0.98 so that integral results with high accuracy can be obtained in engineering applications. •An improved low-frequency attenuation (LFA) algorithm is presented.•Integral accuracy of the LFA algorithm is governed by an accuracy control factor (ACF).•The superiority of the LFA algorithm against several conventional algorithms is verified by a FE simulation example.•A numerical study and a vibration test are designed to investigate influence of ACF on integration accuracy.•An optimal ACF value is given to get good integral result in engineering applications.
AbstractList This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element simulation is conducted to compare the integral accuracy of this algorithm with those of several other conventional integration algorithms and then the superiority of the LFA algorithm is verified. At the same time, a numerical study and a vibration test rig with limit positions of impact are designed to investigate the influence of the ACF on integration accuracy for the LFA algorithm. Besides, three error evaluation indices are proposed to evaluate the integration accuracy. The investigations indicate that the determination of the value of the ACF should fully consider the level of low frequency noise, and it is better to select a relatively large value to ensure a good effect of eliminating the trend error and/or drift error. According to this research, the value of the ACF is suggested to be selected in the range from 0.90 to 0.98 so that integral results with high accuracy can be obtained in engineering applications.
This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element simulation is conducted to compare the integral accuracy of this algorithm with those of several other conventional integration algorithms and then the superiority of the LFA algorithm is verified. At the same time, a numerical study and a vibration test rig with limit positions of impact are designed to investigate the influence of the ACF on integration accuracy for the LFA algorithm. Besides, three error evaluation indices are proposed to evaluate the integration accuracy. The investigations indicate that the determination of the value of the ACF should fully consider the level of low frequency noise, and it is better to select a relatively large value to ensure a good effect of eliminating the trend error and/or drift error. According to this research, the value of the ACF is suggested to be selected in the range from 0.90 to 0.98 so that integral results with high accuracy can be obtained in engineering applications. •An improved low-frequency attenuation (LFA) algorithm is presented.•Integral accuracy of the LFA algorithm is governed by an accuracy control factor (ACF).•The superiority of the LFA algorithm against several conventional algorithms is verified by a FE simulation example.•A numerical study and a vibration test are designed to investigate influence of ACF on integration accuracy.•An optimal ACF value is given to get good integral result in engineering applications.
ArticleNumber 106122
Author Zhou, Yingjie
Hu, Yumei
Zhu, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
  email: haozhu@scu.edu.cn
  organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), School of Architecture and Environment, Sichuan University, Chengdu, 610065, China
– sequence: 2
  givenname: Yingjie
  surname: Zhou
  fullname: Zhou, Yingjie
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
– sequence: 3
  givenname: Yumei
  surname: Hu
  fullname: Hu, Yumei
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
BookMark eNqFkctuFDEQRS0UJCaBT0CyxLonfvRrxAKhACFSJBZkkZ1VbVcHj7rtoewmml_gq_Gks2KTla3yPeXy8Tk7CzEgY--l2Eoh28v9NkU_uWPYKqFOtVYq9YptZN_tKl3L-zO2Eartqk618g07T2kvhOxk327Y3y8-HSawOGPInNDGkDItNvsY-Ehx5jNCWggdB2txQoLTUeIQnioLgT3yQmWKE48j9yHjwxriA6TClQ3wKT5WI-HvBUPJQ84YljUE00Mkn3_Nb9nrEaaE757XC_bz29e7q-_V7Y_rm6vPtxXoVuSq65VDBaNtB6Wt032jdT9A0ygnHbS1GMYyqNO11g2OQyOGRsJODKopsqy-YB_WrgeKZZqUzT4uFMqFRtW12Omd1KKkPq4pSzElwtFYn5_mzQR-MlKYk3qzN8_qzUm9WdUXuvmPPpCfgY4vcp9WDsvz_3gkk6wvwtD58jPZuOhf6PAPM-in3Q
CitedBy_id crossref_primary_10_3390_app112311432
crossref_primary_10_1016_j_engstruct_2025_119693
crossref_primary_10_1109_ACCESS_2022_3202969
crossref_primary_10_1016_j_measurement_2024_114520
crossref_primary_10_3390_s25092659
crossref_primary_10_1038_s41598_024_53823_5
crossref_primary_10_1038_s44172_025_00402_9
crossref_primary_10_1177_14759217241247130
crossref_primary_10_1016_j_measurement_2023_113976
crossref_primary_10_1088_1742_6596_2478_11_112003
crossref_primary_10_3390_app11020873
crossref_primary_10_1016_j_cja_2025_103658
crossref_primary_10_1016_j_measurement_2021_109207
crossref_primary_10_1016_j_apor_2021_102741
crossref_primary_10_3846_jcem_2023_20146
crossref_primary_10_1007_s13349_022_00634_9
crossref_primary_10_1016_j_ymssp_2024_111533
crossref_primary_10_1016_j_ymssp_2024_111482
crossref_primary_10_1109_ACCESS_2023_3338561
crossref_primary_10_1515_teme_2020_0036
Cites_doi 10.1007/s10518-017-0252-1
10.1016/j.soildyn.2007.07.004
10.1016/j.engstruct.2004.10.013
10.1016/j.ymssp.2005.08.009
10.1155/2012/390873
10.1016/j.enggeo.2010.12.006
10.1002/2015GL065746
10.1016/j.proeng.2011.08.1073
10.1016/j.jsv.2010.05.016
10.1016/j.compstruc.2007.11.003
10.1016/j.soildyn.2004.10.007
10.1109/TMECH.2014.2374219
10.1016/j.soildyn.2005.12.011
10.1016/j.engstruct.2018.03.028
10.1016/j.ymssp.2013.09.014
10.3390/s130708377
10.1016/j.ymssp.2013.02.007
10.1002/nme.2769
10.1016/j.ymssp.2006.03.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2020
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2020.106122
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
ExternalDocumentID 10_1016_j_soildyn_2020_106122
S026772611930781X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TG
7UA
8FD
AGCQF
C1K
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-a360t-782de2afc6b23cd385338ba552d1da640bfcced34335efb50b51a90b25101c3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527323700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0267-7261
IngestDate Wed Aug 13 04:51:00 EDT 2025
Tue Nov 18 22:35:03 EST 2025
Sat Nov 29 07:21:00 EST 2025
Fri Feb 23 02:48:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Low-frequency attenuation algorithm
Accuracy control factor
Displacement reconstruction
Vibration test
Finite element simulation
Numerical study
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a360t-782de2afc6b23cd385338ba552d1da640bfcced34335efb50b51a90b25101c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440939130
PQPubID 2045399
ParticipantIDs proquest_journals_2440939130
crossref_citationtrail_10_1016_j_soildyn_2020_106122
crossref_primary_10_1016_j_soildyn_2020_106122
elsevier_sciencedirect_doi_10_1016_j_soildyn_2020_106122
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Park, Kim, Park, Lee (bib12) 2005; 27
Kim, Kim, Sohn (bib15) 2014; 42
Ma, Zhou (bib4) 2011; 16
Jiang, Yao, Wu (bib26) 2009; 29
Xu (bib23) 1997; 17
Gu, Lv (bib24) 2011; 30
Smyth, Wu (bib17) 2007; 21
Edwards (bib21) 2007; 21
Sheu, Yang, Huang (bib6) 2012
Park, Sim, Jung (bib8) 2013; 13
Chawla, Al-Zanaidi, Evans (bib11) 2000; 73
Park, Park, Shin, Lee (bib19) 2008; 86
Boore, Bommer (bib2) 2005; 25
Tomita, Kido, Osada (bib1) 2016; 42
Chen, Wang, Hu (bib16) 2010; 38
Tamaro, Grimaz, Santulin (bib10) 2018; 16
Kim, Jin, Lee (bib5) 2017; vol. 73
Fernando, Jong-Woong, Spencer (bib18) 2018; 25
Park, Park, Kim (bib7) 2015; 20
Lee, Hong, Park (bib22) 2010; 82
Yanga, Lib, Lin (bib14) 2006; 26
Stiros (bib13) 2007; 28
Morfidis, Kostinakis (bib9) 2018; 165
Hong, Kim, S Lee (bib25) 2010; 329
Hsieh, Lee (bib3) 2011; 122
Yun, Lee, Lee (bib20) 2013; 38
Yanga (10.1016/j.soildyn.2020.106122_bib14) 2006; 26
Morfidis (10.1016/j.soildyn.2020.106122_bib9) 2018; 165
Yun (10.1016/j.soildyn.2020.106122_bib20) 2013; 38
Smyth (10.1016/j.soildyn.2020.106122_bib17) 2007; 21
Kim (10.1016/j.soildyn.2020.106122_bib5) 2017; vol. 73
Sheu (10.1016/j.soildyn.2020.106122_bib6) 2012
Park (10.1016/j.soildyn.2020.106122_bib12) 2005; 27
Stiros (10.1016/j.soildyn.2020.106122_bib13) 2007; 28
Hsieh (10.1016/j.soildyn.2020.106122_bib3) 2011; 122
Ma (10.1016/j.soildyn.2020.106122_bib4) 2011; 16
Kim (10.1016/j.soildyn.2020.106122_bib15) 2014; 42
Edwards (10.1016/j.soildyn.2020.106122_bib21) 2007; 21
Lee (10.1016/j.soildyn.2020.106122_bib22) 2010; 82
Chawla (10.1016/j.soildyn.2020.106122_bib11) 2000; 73
Jiang (10.1016/j.soildyn.2020.106122_bib26) 2009; 29
Park (10.1016/j.soildyn.2020.106122_bib8) 2013; 13
Fernando (10.1016/j.soildyn.2020.106122_bib18) 2018; 25
Gu (10.1016/j.soildyn.2020.106122_bib24) 2011; 30
Chen (10.1016/j.soildyn.2020.106122_bib16) 2010; 38
Xu (10.1016/j.soildyn.2020.106122_bib23) 1997; 17
Tamaro (10.1016/j.soildyn.2020.106122_bib10) 2018; 16
Hong (10.1016/j.soildyn.2020.106122_bib25) 2010; 329
Boore (10.1016/j.soildyn.2020.106122_bib2) 2005; 25
Tomita (10.1016/j.soildyn.2020.106122_bib1) 2016; 42
Park (10.1016/j.soildyn.2020.106122_bib7) 2015; 20
Park (10.1016/j.soildyn.2020.106122_bib19) 2008; 86
References_xml – volume: 21
  start-page: 165
  year: 2007
  end-page: 176
  ident: bib21
  article-title: Effects of aliasing on numerical integration
  publication-title: Mech Syst Signal Process
– year: 2012
  ident: bib6
  article-title: Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications
  publication-title: Smart Materials Research
– volume: 38
  start-page: 460
  year: 2013
  end-page: 481
  ident: bib20
  article-title: Design of the FEM-FIR filter for displacement reconstruction using accelerations and displacements measured at different sampling rates
  publication-title: Mech Syst Signal Process
– volume: 25
  start-page: 93
  year: 2005
  end-page: 115
  ident: bib2
  article-title: Processing of strong-motion accelerograms: needs, options and consequences
  publication-title: Soil Dynam Earthq Eng
– volume: 17
  start-page: 30
  year: 1997
  end-page: 34
  ident: bib23
  article-title: Conversion between vibrational acceleration, velocity and displacement using FFT
  publication-title: Chin J Vib Meas Diagnosis
– volume: vol. 73
  start-page: 85
  year: 2017
  end-page: 96
  ident: bib5
  article-title: Failure analysis for vibration-based energy harvester utilized in high-speed railroad vehicle
– volume: 73
  start-page: 503
  year: 2000
  end-page: 515
  ident: bib11
  article-title: Non-dissipative time-integration schemes for the linear advection equation,International
  publication-title: J. Comput. Math.
– volume: 25
  year: 2018
  ident: bib18
  article-title: Reference-free structural dynamic displacement estimation method
  publication-title: Struct Contr Health Monit
– volume: 13
  start-page: 8377
  year: 2013
  end-page: 8392
  ident: bib8
  article-title: Development of a wireless displacement measurement system using acceleration responses
  publication-title: Sensors
– volume: 122
  start-page: 34
  year: 2011
  end-page: 42
  ident: bib3
  article-title: Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration
  publication-title: Eng Geol
– volume: 21
  start-page: 706
  year: 2007
  end-page: 723
  ident: bib17
  article-title: Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring
  publication-title: Mech Syst Signal Process
– volume: 26
  start-page: 725
  year: 2006
  end-page: 734
  ident: bib14
  article-title: A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis
  publication-title: Soil Dynam Earthq Eng
– volume: 165
  start-page: 120
  year: 2018
  end-page: 141
  ident: bib9
  article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks
  publication-title: Eng Struct
– volume: 16
  start-page: 204
  year: 2011
  end-page: 210
  ident: bib4
  article-title: Study of acceleration spectrum replication on an electrohydraulic servo test rig with displacement control
  publication-title: Procedia Engineering
– volume: 329
  start-page: 4980
  year: 2010
  end-page: 5003
  ident: bib25
  article-title: Reconstruction of dynamic displacement and velocity from measured accelerations using the vibrational statement of an inverse problem
  publication-title: J Sound Vib
– volume: 38
  start-page: 1
  year: 2010
  end-page: 4
  ident: bib16
  article-title: Acceleration signal processing by a numerical integration
  publication-title: J Huazhong Univ Sci Technol
– volume: 16
  start-page: 1425
  year: 2018
  end-page: 1445
  ident: bib10
  article-title: Characterization of the expected seismic damage for a critical infrastructure: the case of the oil pipeline in Friuli Venezia Giulia (NE Italy)
  publication-title: Bull Earthq Eng
– volume: 42
  start-page: 194
  year: 2014
  end-page: 205
  ident: bib15
  article-title: Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements
  publication-title: Mech Syst Signal Process
– volume: 27
  start-page: 371
  year: 2005
  end-page: 378
  ident: bib12
  article-title: The determination of bridge displacement using measured acceleration
  publication-title: Eng Struct
– volume: 28
  start-page: 415
  year: 2007
  end-page: 420
  ident: bib13
  article-title: Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation
  publication-title: Soil Dynam Earthq Eng
– volume: 29
  start-page: 261
  year: 2009
  end-page: 266
  ident: bib26
  article-title: Study on calculation of dynamic displacement from time integration of acceleration in shaking table model tests of side slope
  publication-title: J. Disaster. Prev. Mitig. Eng.
– volume: 42
  start-page: 8391
  year: 2016
  end-page: 8397
  ident: bib1
  article-title: First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique
  publication-title: Geophys Res Lett
– volume: 20
  start-page: 2276
  year: 2015
  end-page: 2284
  ident: bib7
  article-title: Deformation monitoring of a building structure using a motion capture system
  publication-title: IEEE ASME Trans Mechatron
– volume: 30
  start-page: 522
  year: 2011
  end-page: 526
  ident: bib24
  article-title: Identification of a mechanism's vibration velocity and displacement based on the acceleration measurement
  publication-title: Mech. Sci. Technol.Aero. Eng.
– volume: 82
  start-page: 403
  year: 2010
  end-page: 434
  ident: bib22
  article-title: Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures
  publication-title: Int J Numer Methods Eng
– volume: 86
  start-page: 1253
  year: 2008
  end-page: 1265
  ident: bib19
  article-title: Detection of abrupt structural damage induced by an earthquake using time-window technique
  publication-title: Comput Struct
– volume: 16
  start-page: 1425
  issue: 3
  year: 2018
  ident: 10.1016/j.soildyn.2020.106122_bib10
  article-title: Characterization of the expected seismic damage for a critical infrastructure: the case of the oil pipeline in Friuli Venezia Giulia (NE Italy)
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-017-0252-1
– volume: 73
  start-page: 503
  issue: 4
  year: 2000
  ident: 10.1016/j.soildyn.2020.106122_bib11
  article-title: Non-dissipative time-integration schemes for the linear advection equation,International
  publication-title: J. Comput. Math.
– volume: 28
  start-page: 415
  issue: 5
  year: 2007
  ident: 10.1016/j.soildyn.2020.106122_bib13
  article-title: Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2007.07.004
– volume: 27
  start-page: 371
  year: 2005
  ident: 10.1016/j.soildyn.2020.106122_bib12
  article-title: The determination of bridge displacement using measured acceleration
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.10.013
– volume: 21
  start-page: 165
  year: 2007
  ident: 10.1016/j.soildyn.2020.106122_bib21
  article-title: Effects of aliasing on numerical integration
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.08.009
– year: 2012
  ident: 10.1016/j.soildyn.2020.106122_bib6
  article-title: Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications
  publication-title: Smart Materials Research
  doi: 10.1155/2012/390873
– volume: 122
  start-page: 34
  year: 2011
  ident: 10.1016/j.soildyn.2020.106122_bib3
  article-title: Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2010.12.006
– volume: 42
  start-page: 8391
  issue: 20
  year: 2016
  ident: 10.1016/j.soildyn.2020.106122_bib1
  article-title: First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique
  publication-title: Geophys Res Lett
  doi: 10.1002/2015GL065746
– volume: vol. 73
  start-page: 85
  year: 2017
  ident: 10.1016/j.soildyn.2020.106122_bib5
– volume: 16
  start-page: 204
  year: 2011
  ident: 10.1016/j.soildyn.2020.106122_bib4
  article-title: Study of acceleration spectrum replication on an electrohydraulic servo test rig with displacement control
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.08.1073
– volume: 25
  year: 2018
  ident: 10.1016/j.soildyn.2020.106122_bib18
  article-title: Reference-free structural dynamic displacement estimation method
  publication-title: Struct Contr Health Monit
– volume: 329
  start-page: 4980
  year: 2010
  ident: 10.1016/j.soildyn.2020.106122_bib25
  article-title: Reconstruction of dynamic displacement and velocity from measured accelerations using the vibrational statement of an inverse problem
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2010.05.016
– volume: 86
  start-page: 1253
  year: 2008
  ident: 10.1016/j.soildyn.2020.106122_bib19
  article-title: Detection of abrupt structural damage induced by an earthquake using time-window technique
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2007.11.003
– volume: 25
  start-page: 93
  year: 2005
  ident: 10.1016/j.soildyn.2020.106122_bib2
  article-title: Processing of strong-motion accelerograms: needs, options and consequences
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2004.10.007
– volume: 17
  start-page: 30
  issue: 4
  year: 1997
  ident: 10.1016/j.soildyn.2020.106122_bib23
  article-title: Conversion between vibrational acceleration, velocity and displacement using FFT
  publication-title: Chin J Vib Meas Diagnosis
– volume: 29
  start-page: 261
  issue: 3
  year: 2009
  ident: 10.1016/j.soildyn.2020.106122_bib26
  article-title: Study on calculation of dynamic displacement from time integration of acceleration in shaking table model tests of side slope
  publication-title: J. Disaster. Prev. Mitig. Eng.
– volume: 20
  start-page: 2276
  issue: 5
  year: 2015
  ident: 10.1016/j.soildyn.2020.106122_bib7
  article-title: Deformation monitoring of a building structure using a motion capture system
  publication-title: IEEE ASME Trans Mechatron
  doi: 10.1109/TMECH.2014.2374219
– volume: 26
  start-page: 725
  issue: 8
  year: 2006
  ident: 10.1016/j.soildyn.2020.106122_bib14
  article-title: A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2005.12.011
– volume: 165
  start-page: 120
  year: 2018
  ident: 10.1016/j.soildyn.2020.106122_bib9
  article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.03.028
– volume: 42
  start-page: 194
  issue: 1–2
  year: 2014
  ident: 10.1016/j.soildyn.2020.106122_bib15
  article-title: Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.09.014
– volume: 13
  start-page: 8377
  issue: 7
  year: 2013
  ident: 10.1016/j.soildyn.2020.106122_bib8
  article-title: Development of a wireless displacement measurement system using acceleration responses
  publication-title: Sensors
  doi: 10.3390/s130708377
– volume: 38
  start-page: 460
  issue: 2
  year: 2013
  ident: 10.1016/j.soildyn.2020.106122_bib20
  article-title: Design of the FEM-FIR filter for displacement reconstruction using accelerations and displacements measured at different sampling rates
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.02.007
– volume: 30
  start-page: 522
  issue: 4
  year: 2011
  ident: 10.1016/j.soildyn.2020.106122_bib24
  article-title: Identification of a mechanism's vibration velocity and displacement based on the acceleration measurement
  publication-title: Mech. Sci. Technol.Aero. Eng.
– volume: 38
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.soildyn.2020.106122_bib16
  article-title: Acceleration signal processing by a numerical integration
  publication-title: J Huazhong Univ Sci Technol
– volume: 82
  start-page: 403
  year: 2010
  ident: 10.1016/j.soildyn.2020.106122_bib22
  article-title: Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2769
– volume: 21
  start-page: 706
  year: 2007
  ident: 10.1016/j.soildyn.2020.106122_bib17
  article-title: Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.03.005
SSID ssj0017186
Score 2.379267
Snippet This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106122
SubjectTerms Accuracy
Accuracy control factor
Algorithms
Attenuation
Computer simulation
Displacement reconstruction
Evaluation
Finite element method
Finite element simulation
Integrals
Integration
LF noise
Low-frequency attenuation algorithm
Mathematical models
Numerical study
Vibration test
Vibration tests
Title Displacement reconstruction from measured accelerations and accuracy control of integration based on a low-frequency attenuation algorithm
URI https://dx.doi.org/10.1016/j.soildyn.2020.106122
https://www.proquest.com/docview/2440939130
Volume 133
WOSCitedRecordID wos000527323700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-341X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017186
  issn: 0267-7261
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGKQtYIJ6iUJAX7KIMHjsvLysoAoQqpFZoYBM5scNkyCQlM1PaX-BH-E2u7bymPEoXbKLIGnucnJN7r-3rY4SecSkySrIMIjdJXE_5zOUphw_Pz4iX-IpRczbgh3fh4WE0m_H3o9GPdi_MaRGWZXR2xk_-K9RQBmDrrbNXgLtrFArgHkCHK8AO138C_mW-MolWZpXfjHc7jVi7mWRppwWlI9IUnE7dJMMZ1dY03dT6APg2g30gKKHra58n9fqCcIrqm5vVNhH73NEqnaVVDXdE8bmq8_V8OQx8j6q8cOR5KZatLDS89_X860Z8UY7qRRGNcBSPvMEMxaf5xjhIUfUllSn6CBUW-YCaphCsbT6czKCkT7pqbB4Fux1Sq8_eGWjGBiZWj2HtVuZfrL-diFhoGeQCnmii_2HS_35bbfuCF-xyE9u0t0XcNBPrZmLbzDW0Q0OfR2O0s__mYPa2W7ACFx_Y6Tzb_36z2PPf9udPYdCFgMBEOce30a1meIL3La3uoJEq76KbA9HKe-j7kGB4m2BYEwy3BMNbBMMAOm4JhhuC4SrDA4JhQzAMNwJvEQwPCIY7gt1HR68Ojl-8dpsTPVzBArJ2IRyVioosDRLKUskgVmRRInyfyqkUgUeSDDommceYr7LEJ4k_FZwkVHuOlD1A47Iq1UOEgyylHmfTgCjlhSyJpC9D4slEJTLwAr6LvPb1xmkjdq_PXCniv8K7iyZdtROr9nJZhajFLm5CVhuKxsDJy6rutVjHjflYxRBsE844BJaPrtqVx-hG_0XtoTEgr56g6-npOl_VTxu-_gSsD8z4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Displacement+reconstruction+from+measured+accelerations+and+accuracy+control+of+integration+based+on+a+low-frequency+attenuation+algorithm&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Zhu%2C+Hao&rft.au=Zhou%2C+Yingjie&rft.au=Hu%2C+Yumei&rft.date=2020-06-01&rft.issn=0267-7261&rft.volume=133&rft.spage=106122&rft_id=info:doi/10.1016%2Fj.soildyn.2020.106122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soildyn_2020_106122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon