Displacement reconstruction from measured accelerations and accuracy control of integration based on a low-frequency attenuation algorithm
This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element sim...
Saved in:
| Published in: | Soil dynamics and earthquake engineering (1984) Vol. 133; p. 106122 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Barking
Elsevier Ltd
01.06.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0267-7261, 1879-341X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element simulation is conducted to compare the integral accuracy of this algorithm with those of several other conventional integration algorithms and then the superiority of the LFA algorithm is verified. At the same time, a numerical study and a vibration test rig with limit positions of impact are designed to investigate the influence of the ACF on integration accuracy for the LFA algorithm. Besides, three error evaluation indices are proposed to evaluate the integration accuracy. The investigations indicate that the determination of the value of the ACF should fully consider the level of low frequency noise, and it is better to select a relatively large value to ensure a good effect of eliminating the trend error and/or drift error. According to this research, the value of the ACF is suggested to be selected in the range from 0.90 to 0.98 so that integral results with high accuracy can be obtained in engineering applications.
•An improved low-frequency attenuation (LFA) algorithm is presented.•Integral accuracy of the LFA algorithm is governed by an accuracy control factor (ACF).•The superiority of the LFA algorithm against several conventional algorithms is verified by a FE simulation example.•A numerical study and a vibration test are designed to investigate influence of ACF on integration accuracy.•An optimal ACF value is given to get good integral result in engineering applications. |
|---|---|
| AbstractList | This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element simulation is conducted to compare the integral accuracy of this algorithm with those of several other conventional integration algorithms and then the superiority of the LFA algorithm is verified. At the same time, a numerical study and a vibration test rig with limit positions of impact are designed to investigate the influence of the ACF on integration accuracy for the LFA algorithm. Besides, three error evaluation indices are proposed to evaluate the integration accuracy. The investigations indicate that the determination of the value of the ACF should fully consider the level of low frequency noise, and it is better to select a relatively large value to ensure a good effect of eliminating the trend error and/or drift error. According to this research, the value of the ACF is suggested to be selected in the range from 0.90 to 0.98 so that integral results with high accuracy can be obtained in engineering applications. This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of acceleration is conducted directly in frequency domain and the integral accuracy is governed by an accuracy control factor (ACF). A finite element simulation is conducted to compare the integral accuracy of this algorithm with those of several other conventional integration algorithms and then the superiority of the LFA algorithm is verified. At the same time, a numerical study and a vibration test rig with limit positions of impact are designed to investigate the influence of the ACF on integration accuracy for the LFA algorithm. Besides, three error evaluation indices are proposed to evaluate the integration accuracy. The investigations indicate that the determination of the value of the ACF should fully consider the level of low frequency noise, and it is better to select a relatively large value to ensure a good effect of eliminating the trend error and/or drift error. According to this research, the value of the ACF is suggested to be selected in the range from 0.90 to 0.98 so that integral results with high accuracy can be obtained in engineering applications. •An improved low-frequency attenuation (LFA) algorithm is presented.•Integral accuracy of the LFA algorithm is governed by an accuracy control factor (ACF).•The superiority of the LFA algorithm against several conventional algorithms is verified by a FE simulation example.•A numerical study and a vibration test are designed to investigate influence of ACF on integration accuracy.•An optimal ACF value is given to get good integral result in engineering applications. |
| ArticleNumber | 106122 |
| Author | Zhou, Yingjie Hu, Yumei Zhu, Hao |
| Author_xml | – sequence: 1 givenname: Hao surname: Zhu fullname: Zhu, Hao email: haozhu@scu.edu.cn organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), School of Architecture and Environment, Sichuan University, Chengdu, 610065, China – sequence: 2 givenname: Yingjie surname: Zhou fullname: Zhou, Yingjie organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China – sequence: 3 givenname: Yumei surname: Hu fullname: Hu, Yumei organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China |
| BookMark | eNqFkctuFDEQRS0UJCaBT0CyxLonfvRrxAKhACFSJBZkkZ1VbVcHj7rtoewmml_gq_Gks2KTla3yPeXy8Tk7CzEgY--l2Eoh28v9NkU_uWPYKqFOtVYq9YptZN_tKl3L-zO2Eartqk618g07T2kvhOxk327Y3y8-HSawOGPInNDGkDItNvsY-Ehx5jNCWggdB2txQoLTUeIQnioLgT3yQmWKE48j9yHjwxriA6TClQ3wKT5WI-HvBUPJQ84YljUE00Mkn3_Nb9nrEaaE757XC_bz29e7q-_V7Y_rm6vPtxXoVuSq65VDBaNtB6Wt032jdT9A0ygnHbS1GMYyqNO11g2OQyOGRsJODKopsqy-YB_WrgeKZZqUzT4uFMqFRtW12Omd1KKkPq4pSzElwtFYn5_mzQR-MlKYk3qzN8_qzUm9WdUXuvmPPpCfgY4vcp9WDsvz_3gkk6wvwtD58jPZuOhf6PAPM-in3Q |
| CitedBy_id | crossref_primary_10_3390_app112311432 crossref_primary_10_1016_j_engstruct_2025_119693 crossref_primary_10_1109_ACCESS_2022_3202969 crossref_primary_10_1016_j_measurement_2024_114520 crossref_primary_10_3390_s25092659 crossref_primary_10_1038_s41598_024_53823_5 crossref_primary_10_1038_s44172_025_00402_9 crossref_primary_10_1177_14759217241247130 crossref_primary_10_1016_j_measurement_2023_113976 crossref_primary_10_1088_1742_6596_2478_11_112003 crossref_primary_10_3390_app11020873 crossref_primary_10_1016_j_cja_2025_103658 crossref_primary_10_1016_j_measurement_2021_109207 crossref_primary_10_1016_j_apor_2021_102741 crossref_primary_10_3846_jcem_2023_20146 crossref_primary_10_1007_s13349_022_00634_9 crossref_primary_10_1016_j_ymssp_2024_111533 crossref_primary_10_1016_j_ymssp_2024_111482 crossref_primary_10_1109_ACCESS_2023_3338561 crossref_primary_10_1515_teme_2020_0036 |
| Cites_doi | 10.1007/s10518-017-0252-1 10.1016/j.soildyn.2007.07.004 10.1016/j.engstruct.2004.10.013 10.1016/j.ymssp.2005.08.009 10.1155/2012/390873 10.1016/j.enggeo.2010.12.006 10.1002/2015GL065746 10.1016/j.proeng.2011.08.1073 10.1016/j.jsv.2010.05.016 10.1016/j.compstruc.2007.11.003 10.1016/j.soildyn.2004.10.007 10.1109/TMECH.2014.2374219 10.1016/j.soildyn.2005.12.011 10.1016/j.engstruct.2018.03.028 10.1016/j.ymssp.2013.09.014 10.3390/s130708377 10.1016/j.ymssp.2013.02.007 10.1002/nme.2769 10.1016/j.ymssp.2006.03.005 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jun 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2020 |
| DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K FR3 KL. KR7 SOI |
| DOI | 10.1016/j.soildyn.2020.106122 |
| DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-341X |
| ExternalDocumentID | 10_1016_j_soildyn_2020_106122 S026772611930781X |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 WUQ Y6R ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TG 7UA 8FD AGCQF C1K FR3 KL. KR7 SOI |
| ID | FETCH-LOGICAL-a360t-782de2afc6b23cd385338ba552d1da640bfcced34335efb50b51a90b25101c3 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527323700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0267-7261 |
| IngestDate | Wed Aug 13 04:51:00 EDT 2025 Tue Nov 18 22:35:03 EST 2025 Sat Nov 29 07:21:00 EST 2025 Fri Feb 23 02:48:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Low-frequency attenuation algorithm Accuracy control factor Displacement reconstruction Vibration test Finite element simulation Numerical study |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a360t-782de2afc6b23cd385338ba552d1da640bfcced34335efb50b51a90b25101c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2440939130 |
| PQPubID | 2045399 |
| ParticipantIDs | proquest_journals_2440939130 crossref_citationtrail_10_1016_j_soildyn_2020_106122 crossref_primary_10_1016_j_soildyn_2020_106122 elsevier_sciencedirect_doi_10_1016_j_soildyn_2020_106122 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Soil dynamics and earthquake engineering (1984) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Park, Kim, Park, Lee (bib12) 2005; 27 Kim, Kim, Sohn (bib15) 2014; 42 Ma, Zhou (bib4) 2011; 16 Jiang, Yao, Wu (bib26) 2009; 29 Xu (bib23) 1997; 17 Gu, Lv (bib24) 2011; 30 Smyth, Wu (bib17) 2007; 21 Edwards (bib21) 2007; 21 Sheu, Yang, Huang (bib6) 2012 Park, Sim, Jung (bib8) 2013; 13 Chawla, Al-Zanaidi, Evans (bib11) 2000; 73 Park, Park, Shin, Lee (bib19) 2008; 86 Boore, Bommer (bib2) 2005; 25 Tomita, Kido, Osada (bib1) 2016; 42 Chen, Wang, Hu (bib16) 2010; 38 Tamaro, Grimaz, Santulin (bib10) 2018; 16 Kim, Jin, Lee (bib5) 2017; vol. 73 Fernando, Jong-Woong, Spencer (bib18) 2018; 25 Park, Park, Kim (bib7) 2015; 20 Lee, Hong, Park (bib22) 2010; 82 Yanga, Lib, Lin (bib14) 2006; 26 Stiros (bib13) 2007; 28 Morfidis, Kostinakis (bib9) 2018; 165 Hong, Kim, S Lee (bib25) 2010; 329 Hsieh, Lee (bib3) 2011; 122 Yun, Lee, Lee (bib20) 2013; 38 Yanga (10.1016/j.soildyn.2020.106122_bib14) 2006; 26 Morfidis (10.1016/j.soildyn.2020.106122_bib9) 2018; 165 Yun (10.1016/j.soildyn.2020.106122_bib20) 2013; 38 Smyth (10.1016/j.soildyn.2020.106122_bib17) 2007; 21 Kim (10.1016/j.soildyn.2020.106122_bib5) 2017; vol. 73 Sheu (10.1016/j.soildyn.2020.106122_bib6) 2012 Park (10.1016/j.soildyn.2020.106122_bib12) 2005; 27 Stiros (10.1016/j.soildyn.2020.106122_bib13) 2007; 28 Hsieh (10.1016/j.soildyn.2020.106122_bib3) 2011; 122 Ma (10.1016/j.soildyn.2020.106122_bib4) 2011; 16 Kim (10.1016/j.soildyn.2020.106122_bib15) 2014; 42 Edwards (10.1016/j.soildyn.2020.106122_bib21) 2007; 21 Lee (10.1016/j.soildyn.2020.106122_bib22) 2010; 82 Chawla (10.1016/j.soildyn.2020.106122_bib11) 2000; 73 Jiang (10.1016/j.soildyn.2020.106122_bib26) 2009; 29 Park (10.1016/j.soildyn.2020.106122_bib8) 2013; 13 Fernando (10.1016/j.soildyn.2020.106122_bib18) 2018; 25 Gu (10.1016/j.soildyn.2020.106122_bib24) 2011; 30 Chen (10.1016/j.soildyn.2020.106122_bib16) 2010; 38 Xu (10.1016/j.soildyn.2020.106122_bib23) 1997; 17 Tamaro (10.1016/j.soildyn.2020.106122_bib10) 2018; 16 Hong (10.1016/j.soildyn.2020.106122_bib25) 2010; 329 Boore (10.1016/j.soildyn.2020.106122_bib2) 2005; 25 Tomita (10.1016/j.soildyn.2020.106122_bib1) 2016; 42 Park (10.1016/j.soildyn.2020.106122_bib7) 2015; 20 Park (10.1016/j.soildyn.2020.106122_bib19) 2008; 86 |
| References_xml | – volume: 21 start-page: 165 year: 2007 end-page: 176 ident: bib21 article-title: Effects of aliasing on numerical integration publication-title: Mech Syst Signal Process – year: 2012 ident: bib6 article-title: Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications publication-title: Smart Materials Research – volume: 38 start-page: 460 year: 2013 end-page: 481 ident: bib20 article-title: Design of the FEM-FIR filter for displacement reconstruction using accelerations and displacements measured at different sampling rates publication-title: Mech Syst Signal Process – volume: 25 start-page: 93 year: 2005 end-page: 115 ident: bib2 article-title: Processing of strong-motion accelerograms: needs, options and consequences publication-title: Soil Dynam Earthq Eng – volume: 17 start-page: 30 year: 1997 end-page: 34 ident: bib23 article-title: Conversion between vibrational acceleration, velocity and displacement using FFT publication-title: Chin J Vib Meas Diagnosis – volume: vol. 73 start-page: 85 year: 2017 end-page: 96 ident: bib5 article-title: Failure analysis for vibration-based energy harvester utilized in high-speed railroad vehicle – volume: 73 start-page: 503 year: 2000 end-page: 515 ident: bib11 article-title: Non-dissipative time-integration schemes for the linear advection equation,International publication-title: J. Comput. Math. – volume: 25 year: 2018 ident: bib18 article-title: Reference-free structural dynamic displacement estimation method publication-title: Struct Contr Health Monit – volume: 13 start-page: 8377 year: 2013 end-page: 8392 ident: bib8 article-title: Development of a wireless displacement measurement system using acceleration responses publication-title: Sensors – volume: 122 start-page: 34 year: 2011 end-page: 42 ident: bib3 article-title: Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration publication-title: Eng Geol – volume: 21 start-page: 706 year: 2007 end-page: 723 ident: bib17 article-title: Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring publication-title: Mech Syst Signal Process – volume: 26 start-page: 725 year: 2006 end-page: 734 ident: bib14 article-title: A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis publication-title: Soil Dynam Earthq Eng – volume: 165 start-page: 120 year: 2018 end-page: 141 ident: bib9 article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks publication-title: Eng Struct – volume: 16 start-page: 204 year: 2011 end-page: 210 ident: bib4 article-title: Study of acceleration spectrum replication on an electrohydraulic servo test rig with displacement control publication-title: Procedia Engineering – volume: 329 start-page: 4980 year: 2010 end-page: 5003 ident: bib25 article-title: Reconstruction of dynamic displacement and velocity from measured accelerations using the vibrational statement of an inverse problem publication-title: J Sound Vib – volume: 38 start-page: 1 year: 2010 end-page: 4 ident: bib16 article-title: Acceleration signal processing by a numerical integration publication-title: J Huazhong Univ Sci Technol – volume: 16 start-page: 1425 year: 2018 end-page: 1445 ident: bib10 article-title: Characterization of the expected seismic damage for a critical infrastructure: the case of the oil pipeline in Friuli Venezia Giulia (NE Italy) publication-title: Bull Earthq Eng – volume: 42 start-page: 194 year: 2014 end-page: 205 ident: bib15 article-title: Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements publication-title: Mech Syst Signal Process – volume: 27 start-page: 371 year: 2005 end-page: 378 ident: bib12 article-title: The determination of bridge displacement using measured acceleration publication-title: Eng Struct – volume: 28 start-page: 415 year: 2007 end-page: 420 ident: bib13 article-title: Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation publication-title: Soil Dynam Earthq Eng – volume: 29 start-page: 261 year: 2009 end-page: 266 ident: bib26 article-title: Study on calculation of dynamic displacement from time integration of acceleration in shaking table model tests of side slope publication-title: J. Disaster. Prev. Mitig. Eng. – volume: 42 start-page: 8391 year: 2016 end-page: 8397 ident: bib1 article-title: First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique publication-title: Geophys Res Lett – volume: 20 start-page: 2276 year: 2015 end-page: 2284 ident: bib7 article-title: Deformation monitoring of a building structure using a motion capture system publication-title: IEEE ASME Trans Mechatron – volume: 30 start-page: 522 year: 2011 end-page: 526 ident: bib24 article-title: Identification of a mechanism's vibration velocity and displacement based on the acceleration measurement publication-title: Mech. Sci. Technol.Aero. Eng. – volume: 82 start-page: 403 year: 2010 end-page: 434 ident: bib22 article-title: Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures publication-title: Int J Numer Methods Eng – volume: 86 start-page: 1253 year: 2008 end-page: 1265 ident: bib19 article-title: Detection of abrupt structural damage induced by an earthquake using time-window technique publication-title: Comput Struct – volume: 16 start-page: 1425 issue: 3 year: 2018 ident: 10.1016/j.soildyn.2020.106122_bib10 article-title: Characterization of the expected seismic damage for a critical infrastructure: the case of the oil pipeline in Friuli Venezia Giulia (NE Italy) publication-title: Bull Earthq Eng doi: 10.1007/s10518-017-0252-1 – volume: 73 start-page: 503 issue: 4 year: 2000 ident: 10.1016/j.soildyn.2020.106122_bib11 article-title: Non-dissipative time-integration schemes for the linear advection equation,International publication-title: J. Comput. Math. – volume: 28 start-page: 415 issue: 5 year: 2007 ident: 10.1016/j.soildyn.2020.106122_bib13 article-title: Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2007.07.004 – volume: 27 start-page: 371 year: 2005 ident: 10.1016/j.soildyn.2020.106122_bib12 article-title: The determination of bridge displacement using measured acceleration publication-title: Eng Struct doi: 10.1016/j.engstruct.2004.10.013 – volume: 21 start-page: 165 year: 2007 ident: 10.1016/j.soildyn.2020.106122_bib21 article-title: Effects of aliasing on numerical integration publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.08.009 – year: 2012 ident: 10.1016/j.soildyn.2020.106122_bib6 article-title: Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications publication-title: Smart Materials Research doi: 10.1155/2012/390873 – volume: 122 start-page: 34 year: 2011 ident: 10.1016/j.soildyn.2020.106122_bib3 article-title: Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration publication-title: Eng Geol doi: 10.1016/j.enggeo.2010.12.006 – volume: 42 start-page: 8391 issue: 20 year: 2016 ident: 10.1016/j.soildyn.2020.106122_bib1 article-title: First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique publication-title: Geophys Res Lett doi: 10.1002/2015GL065746 – volume: vol. 73 start-page: 85 year: 2017 ident: 10.1016/j.soildyn.2020.106122_bib5 – volume: 16 start-page: 204 year: 2011 ident: 10.1016/j.soildyn.2020.106122_bib4 article-title: Study of acceleration spectrum replication on an electrohydraulic servo test rig with displacement control publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.08.1073 – volume: 25 year: 2018 ident: 10.1016/j.soildyn.2020.106122_bib18 article-title: Reference-free structural dynamic displacement estimation method publication-title: Struct Contr Health Monit – volume: 329 start-page: 4980 year: 2010 ident: 10.1016/j.soildyn.2020.106122_bib25 article-title: Reconstruction of dynamic displacement and velocity from measured accelerations using the vibrational statement of an inverse problem publication-title: J Sound Vib doi: 10.1016/j.jsv.2010.05.016 – volume: 86 start-page: 1253 year: 2008 ident: 10.1016/j.soildyn.2020.106122_bib19 article-title: Detection of abrupt structural damage induced by an earthquake using time-window technique publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.11.003 – volume: 25 start-page: 93 year: 2005 ident: 10.1016/j.soildyn.2020.106122_bib2 article-title: Processing of strong-motion accelerograms: needs, options and consequences publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2004.10.007 – volume: 17 start-page: 30 issue: 4 year: 1997 ident: 10.1016/j.soildyn.2020.106122_bib23 article-title: Conversion between vibrational acceleration, velocity and displacement using FFT publication-title: Chin J Vib Meas Diagnosis – volume: 29 start-page: 261 issue: 3 year: 2009 ident: 10.1016/j.soildyn.2020.106122_bib26 article-title: Study on calculation of dynamic displacement from time integration of acceleration in shaking table model tests of side slope publication-title: J. Disaster. Prev. Mitig. Eng. – volume: 20 start-page: 2276 issue: 5 year: 2015 ident: 10.1016/j.soildyn.2020.106122_bib7 article-title: Deformation monitoring of a building structure using a motion capture system publication-title: IEEE ASME Trans Mechatron doi: 10.1109/TMECH.2014.2374219 – volume: 26 start-page: 725 issue: 8 year: 2006 ident: 10.1016/j.soildyn.2020.106122_bib14 article-title: A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2005.12.011 – volume: 165 start-page: 120 year: 2018 ident: 10.1016/j.soildyn.2020.106122_bib9 article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.03.028 – volume: 42 start-page: 194 issue: 1–2 year: 2014 ident: 10.1016/j.soildyn.2020.106122_bib15 article-title: Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.09.014 – volume: 13 start-page: 8377 issue: 7 year: 2013 ident: 10.1016/j.soildyn.2020.106122_bib8 article-title: Development of a wireless displacement measurement system using acceleration responses publication-title: Sensors doi: 10.3390/s130708377 – volume: 38 start-page: 460 issue: 2 year: 2013 ident: 10.1016/j.soildyn.2020.106122_bib20 article-title: Design of the FEM-FIR filter for displacement reconstruction using accelerations and displacements measured at different sampling rates publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.02.007 – volume: 30 start-page: 522 issue: 4 year: 2011 ident: 10.1016/j.soildyn.2020.106122_bib24 article-title: Identification of a mechanism's vibration velocity and displacement based on the acceleration measurement publication-title: Mech. Sci. Technol.Aero. Eng. – volume: 38 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.soildyn.2020.106122_bib16 article-title: Acceleration signal processing by a numerical integration publication-title: J Huazhong Univ Sci Technol – volume: 82 start-page: 403 year: 2010 ident: 10.1016/j.soildyn.2020.106122_bib22 article-title: Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2769 – volume: 21 start-page: 706 year: 2007 ident: 10.1016/j.soildyn.2020.106122_bib17 article-title: Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.03.005 |
| SSID | ssj0017186 |
| Score | 2.3793547 |
| Snippet | This study is aimed to reconstruct displacements from measured accelerations based on a low-frequency attenuation (LFA) algorithm. The integration of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106122 |
| SubjectTerms | Accuracy Accuracy control factor Algorithms Attenuation Computer simulation Displacement reconstruction Evaluation Finite element method Finite element simulation Integrals Integration LF noise Low-frequency attenuation algorithm Mathematical models Numerical study Vibration test Vibration tests |
| Title | Displacement reconstruction from measured accelerations and accuracy control of integration based on a low-frequency attenuation algorithm |
| URI | https://dx.doi.org/10.1016/j.soildyn.2020.106122 https://www.proquest.com/docview/2440939130 |
| Volume | 133 |
| WOSCitedRecordID | wos000527323700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-341X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017186 issn: 0267-7261 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xD5AXiE2UksZ5LkfQEaCqIE1BhY1lxw5NSZNOH8PML_A9fCDXcZK6aGBgwSaKHLl1c07vvb72PUboWRinMvQYsQWPpO2FnCsNyMj2Qyk46UvpiapQeBiORtFkEr_vdH40tTDneVgU0cVFvPivUEMbgK1KZ_8B7vZDoQHuAXS4Auxw_SvgX2WraqNVtcpfzXdbjVhdTDLXaUFhsSQBp7OsN8NVqq1JslmqA-CbHeyGoITqr3yeUOsLzMrLb3a61BuxLy2l0llo1XCL5V_KZbaezs3A97TMcktcFmzeyELDe19Pzzbsq7TkVhSxEo6KI8_IUHyebioHycptS1k1fYIOs8ygZtUI1jYzkxmus910pTNsbZXNR8MOumDLQ1drtvekttNRGNvggCc7hpwQwxT3r3QQOlcxU0rJOfzonhpET02LdXX0riD36B09-TAc0vFgMn6-OLPVWWVqTb8-uOUG2nNDP466aO_4zWDytl29An8f6NyeHvi2cuzFld_8u5jol-igCnnGd9Gdeq6CjzXH7qGOLO6j24aC5QP03WQb3mUbVmzDDdvwDtswMAA3bMM123CZYoNtuGIbhhuGd9iGDbbhlm0P0enJYPzytV0f72EzEjhrG2JTIV2WJgF3SSIIBI4k4sz3XdEXLPAcnsLABPEI8WXKfYf7fRY73FVuJCGPULcoC_kYYZd5DJ4EIUsDT6QJI37MA0cwAbMPN0z2kde8XprUyvfqAJacNlscZ7RGhSpUqEZlH_Xabgst_XJdh6jBjtbxq45LKbDvuq5HDda0tiUrCpG3E5MYosyDPz8-RLe2f6Yj1AWc5RN0MzlfZ6vl05qdPwGrms73 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Displacement+reconstruction+from+measured+accelerations+and+accuracy+control+of+integration+based+on+a+low-frequency+attenuation+algorithm&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Zhu%2C+Hao&rft.au=Zhou%2C+Yingjie&rft.au=Hu%2C+Yumei&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=133&rft.spage=1&rft_id=info:doi/10.1016%2Fj.soildyn.2020.106122&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon |