Active Robot Learning for Temporal Task Models

With the goal of having robots learn new skills after deployment, we propose an active learning framework for modelling user preferences about task execution. The proposed approach interactively gathers information by asking questions expressed in natural language. We study the validity and the lear...

Full description

Saved in:
Bibliographic Details
Published in:2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI) pp. 123 - 131
Main Authors: Racca, Mattia, Kyrki, Ville
Format: Conference Proceeding
Language:English
Published: New York, NY, USA ACM 26.02.2018
Series:ACM Conferences
Subjects:
ISBN:9781450349536, 1450349536
ISSN:2167-2148
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the goal of having robots learn new skills after deployment, we propose an active learning framework for modelling user preferences about task execution. The proposed approach interactively gathers information by asking questions expressed in natural language. We study the validity and the learning performance of the proposed approach and two of its variants compared to a passive learning strategy. We further investigate the human-robot-interaction nature of the framework conducting a usability study with 18 subjects. The results show that active strategies are applicable for learning preferences in temporal tasks from non-expert users. Furthermore, the results provide insights in the interaction design of active learning robots.
ISBN:9781450349536
1450349536
ISSN:2167-2148
DOI:10.1145/3171221.3171241