Adsorptive characterization of the ZIF-68 metal-organic framework: a complex structure with amphiphilic properties
In this experimental study, the adsorption behavior of the ZIF-68 heterolinked zeolitic imidazolate framework has been explored. Vapor phase adsorption isotherms of linear C1-C6 alcohols, C6 alkane isomers, aromatics (benzene, toluene, xylene isomers, 1,3,5-trimethylbenzene, and 1,3,5-triisopropylbe...
Gespeichert in:
| Veröffentlicht in: | Langmuir Jg. 30; H. 28; S. 8416 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
22.07.2014
|
| ISSN: | 1520-5827, 1520-5827 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this experimental study, the adsorption behavior of the ZIF-68 heterolinked zeolitic imidazolate framework has been explored. Vapor phase adsorption isotherms of linear C1-C6 alcohols, C6 alkane isomers, aromatics (benzene, toluene, xylene isomers, 1,3,5-trimethylbenzene, and 1,3,5-triisopropylbenzene), and polar adsorbates (water, acetonitrile, and acetone) are reported and discussed. The complex pore structure of ZIF-68, with two one-dimensional channels, each with a different polarity, displays an overall hydrophobic character. Its two-pore system results in S-shaped isotherms for small polar adsorbates (small alcohols, acetone, and acetonitrile), while longer alcohols and nonpolar molecules, such as aromatics and C6 alkane isomers, lead to type I adsorption isotherms. Bulky molecules, with a kinetic diameter significantly larger than the pore windows, are adsorbed in large amounts, which gave reason to think that this ZIF-68 material has a certain degree of framework flexibility to enlarge the free aperture of the channels. Besides, diffusion coefficients from vapor phase uptake and infrared experiments point to a different adsorption mechanism for polar and nonpolar adsorbates. Liquid phase adsorption experiments demonstrated the separation of alcohol mixtures (ethanol/1-butanol) at low concentration from water, with a clear preference for 1-butanol. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1520-5827 1520-5827 |
| DOI: | 10.1021/la501594t |