Neural analysis of seismic data: applications to the monitoring of Mt. Vesuvius

The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of geophysics Ročník 56; číslo 4; s. S0446
Hlavní autoři: Esposito, Antonietta M., D’Auria, Luca, Giudicepietro, Flora, Caputo, Teresa, Martini, Marcello
Médium: Journal Article
Jazyk:angličtina
Vydáno: Istituto Nazionale di Geofisica e Vulcanologia (INGV) 01.01.2013
Témata:
ISSN:1593-5213, 2037-416X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for detection and discrimination, and may be integrated into intelligent systems for the automatic classification of seismic events. In this work we apply an unsupervised technique for analysis and classification of seismic signals recorded in the Mt. Vesuvius area in order to improve the automatic event detection. The examined dataset contains about 1500 records divided into four typologies of events: earthquakes, landslides, artificial explosions, and “other” (any other signals not included in the previous classes). First, the Linear Predictive Coding (LPC) and a waveform parametrization have been applied to achieve a significant and compact data encoding. Then, the clustering is obtained using a Self-Organizing Map (SOM) neural network which does not require an a-priori classification of the seismic signals, groups those with similar structures, providing a simple framework for understanding the relationships between them. The resulting SOM map is separated into different areas, each one containing the events of a defined type. This means that the SOM discriminates well the four classes of seismic signals. Moreover, the system will classify a new input pattern depending on its position on the SOM map. The proposed approach can be an efficient instrument for the real time automatic analysis of seismic data, especially in the case of possible volcanic unrest.
AbstractList The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for detection and discrimination, and may be integrated into intelligent systems for the automatic classification of seismic events. In this work we apply an unsupervised technique for analysis and classification of seismic signals recorded in the Mt. Vesuvius area in order to improve the automatic event detection. The examined dataset contains about 1500 records divided into four typologies of events: earthquakes, landslides, artificial explosions, and “other” (any other signals not included in the previous classes). First, the Linear Predictive Coding (LPC) and a waveform parametrization have been applied to achieve a significant and compact data encoding. Then, the clustering is obtained using a Self-Organizing Map (SOM) neural network which does not require an a-priori classification of the seismic signals, groups those with similar structures, providing a simple framework for understanding the relationships between them. The resulting SOM map is separated into different areas, each one containing the events of a defined type. This means that the SOM discriminates well the four classes of seismic signals. Moreover, the system will classify a new input pattern depending on its position on the SOM map. The proposed approach can be an efficient instrument for the real time automatic analysis of seismic data, especially in the case of possible volcanic unrest.
Author Martini, Marcello
Esposito, Antonietta M.
Caputo, Teresa
D’Auria, Luca
Giudicepietro, Flora
Author_xml – sequence: 1
  givenname: Antonietta M.
  surname: Esposito
  fullname: Esposito, Antonietta M.
– sequence: 2
  givenname: Luca
  surname: D’Auria
  fullname: D’Auria, Luca
– sequence: 3
  givenname: Flora
  surname: Giudicepietro
  fullname: Giudicepietro, Flora
– sequence: 4
  givenname: Teresa
  surname: Caputo
  fullname: Caputo, Teresa
– sequence: 5
  givenname: Marcello
  surname: Martini
  fullname: Martini, Marcello
BookMark eNpdkMtOwzAQRS1UJEqp-AXvWKX4MYkTdqjiUanQDSB21sRxilEaV7aL1L-nD9h0NdLo3DOae0kGve8tIdecTQAYv8VlVkAuzshQMKky4MXngAx5XsksF1xekHGMrmYASlQqhyFZvNpNwI5ij902ukh9S6N1ceUMbTDhHcX1unMGk_N9pMnT9GXpyvcu-eD65Z5_SRP6YePmx23iFTlvsYt2_DdH5P3x4W36nM0XT7Pp_TxDCSpl1kJZCGjqqi0BTAlFLo0wqsJclVUtFGNSGGhsbUzDjLLMWAVctjUqbMtWjsjs6G08fut1cCsMW-3R6cPCh6XGkJzprN6FORdGooIcDJSlqPKibOpaYGGlqHeu7OgywccYbKuNS4eHU0DXac70vlyNS70vd8ffnPD_90_JX084e2o
CitedBy_id crossref_primary_10_1038_s41467_020_17841_x
crossref_primary_10_1109_JIOT_2022_3148786
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.4401/ag-6452
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2037-416X
ExternalDocumentID oai_doaj_org_article_7e0112c3a7454c48829568dbb2a6e32b
10_4401_ag_6452
GroupedDBID 23M
5GY
5VS
AAFWJ
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
EJD
GROUPED_DOAJ
KQ8
OK1
ZBA
~02
ID FETCH-LOGICAL-a347t-ee48624db9f844c84653c2c79a5789b270032c4debccd0c7e0ce7413fba7af8f3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328254000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1593-5213
IngestDate Fri Oct 03 12:46:37 EDT 2025
Tue Nov 18 20:58:06 EST 2025
Sat Nov 29 07:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a347t-ee48624db9f844c84653c2c79a5789b270032c4debccd0c7e0ce7413fba7af8f3
OpenAccessLink https://doaj.org/article/7e0112c3a7454c48829568dbb2a6e32b
ParticipantIDs doaj_primary_oai_doaj_org_article_7e0112c3a7454c48829568dbb2a6e32b
crossref_citationtrail_10_4401_ag_6452
crossref_primary_10_4401_ag_6452
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Annals of geophysics
PublicationYear 2013
Publisher Istituto Nazionale di Geofisica e Vulcanologia (INGV)
Publisher_xml – name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
SSID ssib044729754
ssj0000395706
ssib008483917
Score 2.077595
Snippet The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage S0446
SubjectTerms Mt. Vesuvius
Neural networks
Seismic signals
Self-Organizing Map (SOM)
Unsupervised clustering
Title Neural analysis of seismic data: applications to the monitoring of Mt. Vesuvius
URI https://doaj.org/article/7e0112c3a7454c48829568dbb2a6e32b
Volume 56
WOSCitedRecordID wos000328254000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2037-416X
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000395706
  issn: 1593-5213
  databaseCode: DOA
  dateStart: 19480101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2037-416X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044729754
  issn: 1593-5213
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQBRIL4inKSx4QW2gamzpmA9SKgRYGQN0i--JUlWiLmrQjv507J5QgBhaWDLETRZ_PuZfvO8bOQwtSu7YOiB0skK4TB0YYFYQ6BSFUmBrr2fUf1GAQD4f6qdbqi86ElfTAJXAt5VACI8Dn5ZUEFLeICtxSayPTcSKy9PcNla45UyRJsUTF_224S6moglSuoi8hpad8401U5wK9sbYoK2ol-hstMwoo3_dDVdUY_b3q6W2zrcpm5Dflt-6wNTfdZRv-7Cbke-yRCDZw3FT8InyW8dyN88kYOB0Aveb1LDUvZhyNPj7xm5miejS_X1zyV5cvluNFvs9eet3nu_ug6pOAsEpVBM5JKvNIrc5iKSEmyjSIQGmD21FbSi2LCGTqLEAaAiIKDg0JkVmjTBZn4oA1prOpO2Q8BDQgEGcnlJBOaauyzKLHoQiuNAqb7OILkgQqEnHqZfGWoDNB2CVmlBB2TcZXE99L3ozfU24J09UwEV37G7j8SbX8yV_Lf_QfLzlmm5HvckGRlRPWKOYLd8rWYVmM8_mZlyy89j-6n7fRzng
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+analysis+of+seismic+data%3A+applications+to+the+monitoring+of+Mt.+Vesuvius&rft.jtitle=Annals+of+geophysics&rft.au=Esposito%2C+Antonietta+M.&rft.au=D%E2%80%99Auria%2C+Luca&rft.au=Giudicepietro%2C+Flora&rft.au=Caputo%2C+Teresa&rft.date=2013-01-01&rft.issn=1593-5213&rft.eissn=2037-416X&rft.volume=56&rft.issue=4&rft.spage=S0446&rft_id=info:doi/10.4401%2Fag-6452&rft.externalDBID=n%2Fa&rft.externalDocID=10_4401_ag_6452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1593-5213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1593-5213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1593-5213&client=summon