Neural analysis of seismic data: applications to the monitoring of Mt. Vesuvius
The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for...
Uloženo v:
| Vydáno v: | Annals of geophysics Ročník 56; číslo 4; s. S0446 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Istituto Nazionale di Geofisica e Vulcanologia (INGV)
01.01.2013
|
| Témata: | |
| ISSN: | 1593-5213, 2037-416X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for detection and discrimination, and may be integrated into intelligent systems for the automatic classification of seismic events. In this work we apply an unsupervised technique for analysis and classification of seismic signals recorded in the Mt. Vesuvius area in order to improve the automatic event detection. The examined dataset contains about 1500 records divided into four typologies of events: earthquakes, landslides, artificial explosions, and “other” (any other signals not included in the previous classes). First, the Linear Predictive Coding (LPC) and a waveform parametrization have been applied to achieve a significant and compact data encoding. Then, the clustering is obtained using a Self-Organizing Map (SOM) neural network which does not require an a-priori classification of the seismic signals, groups those with similar structures, providing a simple framework for understanding the relationships between them. The resulting SOM map is separated into different areas, each one containing the events of a defined type. This means that the SOM discriminates well the four classes of seismic signals. Moreover, the system will classify a new input pattern depending on its position on the SOM map. The proposed approach can be an efficient instrument for the real time automatic analysis of seismic data, especially in the case of possible volcanic unrest. |
|---|---|
| AbstractList | The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for detection and discrimination, and may be integrated into intelligent systems for the automatic classification of seismic events. In this work we apply an unsupervised technique for analysis and classification of seismic signals recorded in the Mt. Vesuvius area in order to improve the automatic event detection. The examined dataset contains about 1500 records divided into four typologies of events: earthquakes, landslides, artificial explosions, and “other” (any other signals not included in the previous classes). First, the Linear Predictive Coding (LPC) and a waveform parametrization have been applied to achieve a significant and compact data encoding. Then, the clustering is obtained using a Self-Organizing Map (SOM) neural network which does not require an a-priori classification of the seismic signals, groups those with similar structures, providing a simple framework for understanding the relationships between them. The resulting SOM map is separated into different areas, each one containing the events of a defined type. This means that the SOM discriminates well the four classes of seismic signals. Moreover, the system will classify a new input pattern depending on its position on the SOM map. The proposed approach can be an efficient instrument for the real time automatic analysis of seismic data, especially in the case of possible volcanic unrest. |
| Author | Martini, Marcello Esposito, Antonietta M. Caputo, Teresa D’Auria, Luca Giudicepietro, Flora |
| Author_xml | – sequence: 1 givenname: Antonietta M. surname: Esposito fullname: Esposito, Antonietta M. – sequence: 2 givenname: Luca surname: D’Auria fullname: D’Auria, Luca – sequence: 3 givenname: Flora surname: Giudicepietro fullname: Giudicepietro, Flora – sequence: 4 givenname: Teresa surname: Caputo fullname: Caputo, Teresa – sequence: 5 givenname: Marcello surname: Martini fullname: Martini, Marcello |
| BookMark | eNpdkMtOwzAQRS1UJEqp-AXvWKX4MYkTdqjiUanQDSB21sRxilEaV7aL1L-nD9h0NdLo3DOae0kGve8tIdecTQAYv8VlVkAuzshQMKky4MXngAx5XsksF1xekHGMrmYASlQqhyFZvNpNwI5ij902ukh9S6N1ceUMbTDhHcX1unMGk_N9pMnT9GXpyvcu-eD65Z5_SRP6YePmx23iFTlvsYt2_DdH5P3x4W36nM0XT7Pp_TxDCSpl1kJZCGjqqi0BTAlFLo0wqsJclVUtFGNSGGhsbUzDjLLMWAVctjUqbMtWjsjs6G08fut1cCsMW-3R6cPCh6XGkJzprN6FORdGooIcDJSlqPKibOpaYGGlqHeu7OgywccYbKuNS4eHU0DXac70vlyNS70vd8ffnPD_90_JX084e2o |
| CitedBy_id | crossref_primary_10_1038_s41467_020_17841_x crossref_primary_10_1109_JIOT_2022_3148786 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.4401/ag-6452 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2037-416X |
| ExternalDocumentID | oai_doaj_org_article_7e0112c3a7454c48829568dbb2a6e32b 10_4401_ag_6452 |
| GroupedDBID | 23M 5GY 5VS AAFWJ AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EBS EJD GROUPED_DOAJ KQ8 OK1 ZBA ~02 |
| ID | FETCH-LOGICAL-a347t-ee48624db9f844c84653c2c79a5789b270032c4debccd0c7e0ce7413fba7af8f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328254000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1593-5213 |
| IngestDate | Fri Oct 03 12:46:37 EDT 2025 Tue Nov 18 20:58:06 EST 2025 Sat Nov 29 07:37:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a347t-ee48624db9f844c84653c2c79a5789b270032c4debccd0c7e0ce7413fba7af8f3 |
| OpenAccessLink | https://doaj.org/article/7e0112c3a7454c48829568dbb2a6e32b |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7e0112c3a7454c48829568dbb2a6e32b crossref_citationtrail_10_4401_ag_6452 crossref_primary_10_4401_ag_6452 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Annals of geophysics |
| PublicationYear | 2013 |
| Publisher | Istituto Nazionale di Geofisica e Vulcanologia (INGV) |
| Publisher_xml | – name: Istituto Nazionale di Geofisica e Vulcanologia (INGV) |
| SSID | ssib044729754 ssj0000395706 ssib008483917 |
| Score | 2.0777009 |
| Snippet | The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | S0446 |
| SubjectTerms | Mt. Vesuvius Neural networks Seismic signals Self-Organizing Map (SOM) Unsupervised clustering |
| Title | Neural analysis of seismic data: applications to the monitoring of Mt. Vesuvius |
| URI | https://doaj.org/article/7e0112c3a7454c48829568dbb2a6e32b |
| Volume | 56 |
| WOSCitedRecordID | wos000328254000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2037-416X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0000395706 issn: 1593-5213 databaseCode: DOA dateStart: 19480101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2037-416X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044729754 issn: 1593-5213 databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQAokF8RTlJQ-ILVDsS52wAQKx8BgAsUX22a4qQYtIyshv5y5JSxEDC0uG2DpFd3bu_Z0QBzGHWIfeVJr5BIy3iQUXE9-LmLo0dd40wybM7W32_Jzfz4z64pqwBh64YdyxCURJobYGUkA6boob3LxzyvaCVo7_vl2TzzhTfJIyIMX_bbgDGO4ghWn0pcvpqXrwJqlzTd7YiW46aoH8jWPbTzjf90NVzSD616rnakUstzajPGu-dVXMheGaWKxrN7FcF3cMsEHrtsUXkaMoyzAoXwcouQD0VM5mqWU1kmT0ydf6MnNUj_ffVEfyKZTjj8G43BCPV5cPF9dJOychsRpMlYQA3ObhXR4zAMwYMg0VmtzSdcwdp5a1QvDBIfouEkcxkCGho7PGxizqTTE_HA3DlpBI9oOyaY4OAHTvxJG3k2pjQUHPha7viMMJSwpsQcR5lsVLQc4E866w_YJ51yFak41vDW7G7y3nzNPpMgNd1y9I_EUr_uIv8W__B5EdsaTqKRccWdkV89X7OOyJBfyoBuX7fn2y6HnzefkFGEvO5g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+analysis+of+seismic+data%3A+applications+to+the+monitoring+of+Mt.+Vesuvius&rft.jtitle=Annals+of+geophysics&rft.au=Antonietta+M.+Esposito&rft.au=Luca+D%E2%80%99Auria&rft.au=Flora+Giudicepietro&rft.au=Teresa+Caputo&rft.date=2013-01-01&rft.pub=Istituto+Nazionale+di+Geofisica+e+Vulcanologia+%28INGV%29&rft.issn=1593-5213&rft.eissn=2037-416X&rft.volume=56&rft.issue=4&rft_id=info:doi/10.4401%2Fag-6452&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e0112c3a7454c48829568dbb2a6e32b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1593-5213&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1593-5213&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1593-5213&client=summon |