Metabolic Engineering of Yarrowia lipolytica for Zeaxanthin Production
Zeaxanthin is a carotenoid, a dihydroxy derivative of β-carotene. Zeaxanthin has antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. In this study, Yarrowia lipolytica was used as a host for the efficient production of zeaxanthin. The strain Y. lipolytica PO1h was used to con...
Uloženo v:
| Vydáno v: | Journal of agricultural and food chemistry Ročník 71; číslo 37; s. 13828 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
20.09.2023
|
| ISSN: | 1520-5118, 1520-5118 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Zeaxanthin is a carotenoid, a dihydroxy derivative of β-carotene. Zeaxanthin has antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. In this study, Yarrowia lipolytica was used as a host for the efficient production of zeaxanthin. The strain Y. lipolytica PO1h was used to construct the following engineered strains for carotenoid production since it produced the highest β-carotene among the Y. lipolytica PO1h- and Y. lipolytica PEX17-HA-derived strains. By regulating the key nodes on the carotenoid pathway through wild and mutant enzyme comparison and successive modular assembly, the β-carotene concentration was improved from 19.9 to 422.0 mg/L. To provide more precursor mevalonate, heterologous genes mvaE and mvaSMT were introduced to increase the production of β-carotene by 27.2% to the yield of 536.8 mg/L. The β-carotene hydroxylase gene crtZ was then transferred, resulting in a yield of zeaxanthin of 326.5 mg/L. The oxidoreductase RFNR1 and CrtZ were then used to further enhance zeaxanthin production, and the yield of zeaxanthin was up to 775.3 mg/L in YPD shake flask.Zeaxanthin is a carotenoid, a dihydroxy derivative of β-carotene. Zeaxanthin has antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. In this study, Yarrowia lipolytica was used as a host for the efficient production of zeaxanthin. The strain Y. lipolytica PO1h was used to construct the following engineered strains for carotenoid production since it produced the highest β-carotene among the Y. lipolytica PO1h- and Y. lipolytica PEX17-HA-derived strains. By regulating the key nodes on the carotenoid pathway through wild and mutant enzyme comparison and successive modular assembly, the β-carotene concentration was improved from 19.9 to 422.0 mg/L. To provide more precursor mevalonate, heterologous genes mvaE and mvaSMT were introduced to increase the production of β-carotene by 27.2% to the yield of 536.8 mg/L. The β-carotene hydroxylase gene crtZ was then transferred, resulting in a yield of zeaxanthin of 326.5 mg/L. The oxidoreductase RFNR1 and CrtZ were then used to further enhance zeaxanthin production, and the yield of zeaxanthin was up to 775.3 mg/L in YPD shake flask. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1520-5118 1520-5118 |
| DOI: | 10.1021/acs.jafc.3c01772 |