A Note on the Complexity of Classical and Intuitionistic Proofs

We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an elementary function f such that if φ is a cut-free LK proof of ⊢ A with symbol complexity ≤ c, then there exists a cut-free LJ proof...

Full description

Saved in:
Bibliographic Details
Published in:2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 657 - 666
Main Authors: Baaz, Matthias, Leitsch, Alexander, Reis, Giselle
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2015
Subjects:
ISSN:1043-6871
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an elementary function f such that if φ is a cut-free LK proof of ⊢ A with symbol complexity ≤ c, then there exists a cut-free LJ proof of 1⊢ ⊣⊣A with symbol complexity ≤ f(c)". This follows from the more general result: "There is an elementary function f such that if φ is a cut-free LK proof of A ⊢ with symbol complexity ≤ c, then there exists a cut-free LJ proof of A ⊢ with symbol complexity ≤ f(c)". The result is proved using a suitable variant of cut-elimination by resolution (CERES) and subsumption.
AbstractList We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an elementary function f such that if φ is a cut-free LK proof of ⊢ A with symbol complexity ≤ c, then there exists a cut-free LJ proof of 1⊢ ⊣⊣A with symbol complexity ≤ f(c)". This follows from the more general result: "There is an elementary function f such that if φ is a cut-free LK proof of A ⊢ with symbol complexity ≤ c, then there exists a cut-free LJ proof of A ⊢ with symbol complexity ≤ f(c)". The result is proved using a suitable variant of cut-elimination by resolution (CERES) and subsumption.
Author Baaz, Matthias
Reis, Giselle
Leitsch, Alexander
Author_xml – sequence: 1
  givenname: Matthias
  surname: Baaz
  fullname: Baaz, Matthias
  email: baaz@logic.at
– sequence: 2
  givenname: Alexander
  surname: Leitsch
  fullname: Leitsch, Alexander
  email: leitsch@logic.at
– sequence: 3
  givenname: Giselle
  surname: Reis
  fullname: Reis, Giselle
  email: giselle.reis@inria.fr
BookMark eNotzMtKAzEUANAIFWxrd-7c5Aem3pt3VlIGHwODCuq6xEyCkemkTCLYv3ehq7M7K7KY8hQIuULYIoK96bv2dcsA5VapM7Kx2qDQ1hqjpViQJYLgjTIaL8iqlC8AYErAktzu6FOugeaJ1s9A23w4juEn1RPNkbajKyV5N1I3DbSb6neqKU-p1OTpy5xzLJfkPLqxhM2_a_J-f_fWPjb980PX7vrGcaFqM7BBSgUgP7yJinupGYsgg8cQjJfogA2WO4gDGlAGfUTutDBMi8AG5vmaXP-9KYSwP87p4ObTXqMWlgH_Bd4qSR4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS.2015.66
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479988754
1479988758
EndPage 666
ExternalDocumentID 7174920
Genre orig-research
GroupedDBID --Z
23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-a346t-d2d556005bc8f63c5722f05ec1ee8c51a02d93a0fd180681cf13a748274e2d2c3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380427100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-6871
IngestDate Wed Aug 27 02:33:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a346t-d2d556005bc8f63c5722f05ec1ee8c51a02d93a0fd180681cf13a748274e2d2c3
OpenAccessLink https://inria.hal.science/hal-01208346
PageCount 10
ParticipantIDs ieee_primary_7174920
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002640
ssj0002179874
Score 1.9224708
Snippet We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an...
SourceID ieee
SourceType Publisher
StartPage 657
SubjectTerms Calculus
classical logic
complexity
Complexity theory
Computer science
Context
Geometry
Glivenko's theorem
intuitionistic logic
Merging
Title A Note on the Complexity of Classical and Intuitionistic Proofs
URI https://ieeexplore.ieee.org/document/7174920
WOSCitedRecordID wos000380427100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePBUtRXf5ODRtNns5nUSKRYLpRR80FvJE7zsSrsV_Pcm6bp68OIthBDCDLvfTPLNNwDcOKsybZVCIQHiqNBKIEW8QVZiqYjWskhKTK8zPp-L5VIuOuC2rYVxziXymRvGYXrLt5XZxquyUUg9CklCgr7HOdvVarX3KSQqb8VQpvkLB6BvlAhyxEJW0JLe5Wg2HT9FUhcdRm3EX01VEqZMev87zSEY_BTnwUULO0eg48pj0PvuzgCbj7UP7u7hvKodrEoYgjwYF0Txy_oTVh6mXpjRP1CVFk4D8CTqVlJtjrsHaByAl8nD8_gRNe0SkMoLViNLLI3xC9VGeJYbygnxmDqTOScMzRQmVuYKe5sJzERmfJYrHmVAC0csMfkJ6JZV6U4BxMGDVnItmGKFoE6FKMBwb6yQGitJz0A_2mP1vlPEWDWmOP97-gIcRGvvSK6XoFuvt-4K7JuP-m2zvk5u_AK25Zuc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnqauom_zcGj2dI0aZOTiDg2rGXglN1GfhW8tDI7wf_eJKvVgxdvIYQQ3qP93ku-9z0ArqyRkTJSIpcApYgqyZEkhUZGYCGJUoIGJaaXLM1zvliIWQdct7Uw1tpAPrNDPwxv-abSa39VNnKpBxXEJehbjFKCN9Va7Y0K8dpbPphp_sMO6hstghglLi9oae9ilE3vnjytiw29OuKvtioBVca9_51nDwx-yvPgrAWefdCx5QHoffdngM3n2gc3tzCvagurErowD_oFXv6y_oRVAUM3TO8hKEsDpw56Ankr6Db73R04DsDz-H5-N0FNwwQkY5rUyBDDfATDlOZFEmuWElJgZnVkLdcskpgYEUtcmIjjhEe6iGKZeiFQaokhOj4E3bIq7RGA2PnQiFTxRCaUMytdHKDTQhsuFJaCHYO-t8fybaOJsWxMcfL39CXYmcwfs2U2zR9Owa63_Ibyega69Wptz8G2_qhf31cXwaVfA4Oe4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+30th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=A+Note+on+the+Complexity+of+Classical+and+Intuitionistic+Proofs&rft.au=Baaz%2C+Matthias&rft.au=Leitsch%2C+Alexander&rft.au=Reis%2C+Giselle&rft.date=2015-07-01&rft.pub=IEEE&rft.issn=1043-6871&rft.spage=657&rft.epage=666&rft_id=info:doi/10.1109%2FLICS.2015.66&rft.externalDocID=7174920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6871&client=summon