Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder
Deep neural networks perform very well in learning high-level representations in support of multivariate geochemical anomaly recognition. Geochemical exploration data typically contain a proportion of large variations and missing values, which motivated us to construct a network architecture optimiz...
Uložené v:
| Vydané v: | Mathematical geosciences Ročník 54; číslo 3; s. 623 - 644 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1874-8961, 1874-8953 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!