Online learning of exploratory behavior through human-robot interaction

Currently, many studies have been conducted on robot interactions with humans. Object recognition and feature extraction are essential functions for such robots. Discernment behavior is a type of exploratory behavior that supports object feature extraction. We have proposed an active perception mode...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:HRI '14 : proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction : March 3-6, 2014, Bielefeld, Germany s. 166 - 167
Hlavní autoři: Gouko, Manabu, Kobayashi, Yuichi, Kim, Chyon Hae
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: New York, NY, USA ACM 03.03.2014
Edice:ACM Conferences
Témata:
ISBN:1450326587, 9781450326582
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Currently, many studies have been conducted on robot interactions with humans. Object recognition and feature extraction are essential functions for such robots. Discernment behavior is a type of exploratory behavior that supports object feature extraction. We have proposed an active perception model that autonomously learns discernment behaviors. We have shown the effectiveness of our model using a mobile robot simulation. In this study, we applied our model to a real humanoid robot and confirmed that the robot successfully learns exploratory behaviors. We show that the robot can learn suitable exploratory behaviors by online learning applicable to real-world environments.
ISBN:1450326587
9781450326582
DOI:10.1145/2559636.2563686