Practical iterated fill synthesis for CMP uniformity

We propose practical iterated methods for layout density control for CMP uniformity, based on linear programming, Monte-Carlo and greedy algorithms. We experimentally study the tradeoffs between two main filling objectives: minimizing density variation, and minimizing the total amount of inserted fi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:37th Design Automation Conference, 2000 s. 671 - 674
Hlavní autoři: Chen, Yu, Kahng, Andrew B., Robins, Gabriel, Zelikovsky, Alexander
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 01.01.2000
IEEE
Edice:ACM Conferences
Témata:
ISBN:9781581131871, 1581131879
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose practical iterated methods for layout density control for CMP uniformity, based on linear programming, Monte-Carlo and greedy algorithms. We experimentally study the tradeoffs between two main filling objectives: minimizing density variation, and minimizing the total amount of inserted fill. Comparisons with previous filling methods show the advantages of our new iterated Monte-Carlo and iterated greedy methods. We achieve near-optimal filling with respect to each of the objectives and for both density models (spatial density [3] and effective density [8]). Our new methods are more efficient in practice than linear programming [3] and more accurate than non-iterated Monte-Carlo approaches [1].
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9781581131871
1581131879
DOI:10.1145/337292.337610