A modified BET equation to investigate supercritical methane adsorption mechanisms in shale

Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in supercritical conditions because the saturation vapor pressure (p0) in this equation is not defined when T > Tc. In this study, a modified...

Full description

Saved in:
Bibliographic Details
Published in:Marine and petroleum geology Vol. 105; pp. 284 - 292
Main Authors: Zhou, Shangwen, Zhang, Dongxiao, Wang, Hongyan, Li, Xiaohan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2019
Subjects:
ISSN:0264-8172, 1873-4073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in supercritical conditions because the saturation vapor pressure (p0) in this equation is not defined when T > Tc. In this study, a modified BET equation is proposed, and can be applied to investigate supercritical methane adsorption mechanisms in shale by using density instead of pressure in this equation. The observed (excess) high-pressure methane adsorption isotherms always can be well-fitted by the modified BET model when the adsorbed-phase density (ρa) is not fixed. The fitted results show that the number of adsorption layers (n) ranges from 1.79 to 2.42, with an average value of 2.12, indicating a double-layer adsorption mechanism approximately. Moreover, we compare this novel model with the commonly used Langmuir and DR models, and find that all the three models can fit the excess adsorption isotherms equally well. However, a critical advantage of this new model is that it can calculate the number of adsorption layers (n), while other models cannot. It is this advantage that makes it possible to analyze the shale gas adsorption mechanism experimentally. Moreover, the average number of adsorption layers (θ) is much smaller than the number of adsorption layers (n), indicating that there are many empty adsorption sites in the adsorption space and the density of the second layer must be less than the first layer, which is consistent with the molecular simulation results. •A modified BET equation is proposed to investigate methane adsorption mechanisms in shale.•The experimental high-pressure adsorption isotherms can be well-fitted by the new model.•Supercritical methane is found to be approximately double-layer adsorbed in shale.
AbstractList Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in supercritical conditions because the saturation vapor pressure (p0) in this equation is not defined when T > Tc. In this study, a modified BET equation is proposed, and can be applied to investigate supercritical methane adsorption mechanisms in shale by using density instead of pressure in this equation. The observed (excess) high-pressure methane adsorption isotherms always can be well-fitted by the modified BET model when the adsorbed-phase density (ρa) is not fixed. The fitted results show that the number of adsorption layers (n) ranges from 1.79 to 2.42, with an average value of 2.12, indicating a double-layer adsorption mechanism approximately. Moreover, we compare this novel model with the commonly used Langmuir and DR models, and find that all the three models can fit the excess adsorption isotherms equally well. However, a critical advantage of this new model is that it can calculate the number of adsorption layers (n), while other models cannot. It is this advantage that makes it possible to analyze the shale gas adsorption mechanism experimentally. Moreover, the average number of adsorption layers (θ) is much smaller than the number of adsorption layers (n), indicating that there are many empty adsorption sites in the adsorption space and the density of the second layer must be less than the first layer, which is consistent with the molecular simulation results. •A modified BET equation is proposed to investigate methane adsorption mechanisms in shale.•The experimental high-pressure adsorption isotherms can be well-fitted by the new model.•Supercritical methane is found to be approximately double-layer adsorbed in shale.
Author Zhou, Shangwen
Li, Xiaohan
Wang, Hongyan
Zhang, Dongxiao
Author_xml – sequence: 1
  givenname: Shangwen
  orcidid: 0000-0003-0426-9683
  surname: Zhou
  fullname: Zhou, Shangwen
  organization: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
– sequence: 2
  givenname: Dongxiao
  surname: Zhang
  fullname: Zhang, Dongxiao
  email: dxz@pku.edu.cn
  organization: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
– sequence: 3
  givenname: Hongyan
  surname: Wang
  fullname: Wang, Hongyan
  organization: PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 100083, China
– sequence: 4
  givenname: Xiaohan
  surname: Li
  fullname: Li, Xiaohan
  organization: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
BookMark eNqNkL1OwzAUhS1UJNrCM-AXSLBjYycDQ6nKj1SJpRuD5dg3rasmDrZbibcnbREDC0xXujrfkc43QaPOd4DQLSU5JVTcbfNWhx7SGnxeEFrlhOeEiQs0pqVkGSeSjdCYFIJnJZXFFZrEuCWEyIrQMXqf4dZb1ziw-HGxwvCx18n5DiePXXeAmNxaJ8Bx30MwwSVn9A63kDa6A6xt9KE_5Vsww8vFNg4cjhu9g2t02ehdhJvvO0Wrp8Vq_pIt355f57NlphkrUyZKLWgty1pUdckKboDThrOGcmlpVTcS6opUWlSssZazmpeW8XsqOGNa04JN0cO51gQfY4BGGZdOI1LQbqcoUUdRaqt-RKmjKEW4GkQNvPzF98EN0c9_kLMzCcO6g4OgonHQGbAugEnKevdnxxdLGYxG
CitedBy_id crossref_primary_10_1007_s00894_023_05704_3
crossref_primary_10_1016_j_cej_2023_144778
crossref_primary_10_1016_j_coal_2023_104369
crossref_primary_10_1016_j_cej_2020_127678
crossref_primary_10_1088_2053_1591_abcc5d
crossref_primary_10_1016_j_supflu_2024_106343
crossref_primary_10_1063_5_0220929
crossref_primary_10_1016_j_energy_2022_125898
crossref_primary_10_3389_feart_2022_903588
crossref_primary_10_1016_j_cej_2023_146196
crossref_primary_10_1016_j_jngse_2021_103824
crossref_primary_10_1177_0263617419866986
crossref_primary_10_1016_j_snb_2021_130277
crossref_primary_10_1016_j_cej_2025_167666
crossref_primary_10_1007_s11270_022_05750_2
crossref_primary_10_1016_j_cej_2023_145931
crossref_primary_10_1155_2021_5562532
crossref_primary_10_1016_j_petsci_2025_09_012
crossref_primary_10_1007_s11053_021_09846_0
crossref_primary_10_3390_app132413194
crossref_primary_10_1063_5_0278272
crossref_primary_10_1039_D2RA03632K
crossref_primary_10_1016_j_cej_2022_138105
crossref_primary_10_3390_en14206836
crossref_primary_10_1016_j_rineng_2025_107370
crossref_primary_10_1002_ente_202400377
crossref_primary_10_1016_j_petsci_2022_12_006
crossref_primary_10_2118_205886_PA
crossref_primary_10_3389_feart_2022_943935
crossref_primary_10_1016_j_fuel_2025_134976
crossref_primary_10_3390_en16083305
crossref_primary_10_1016_j_cej_2020_124989
crossref_primary_10_1051_e3sconf_202448803009
crossref_primary_10_1016_j_fuel_2023_127520
crossref_primary_10_3389_fenrg_2022_829800
crossref_primary_10_1016_j_ijhydene_2025_05_090
crossref_primary_10_1007_s10450_021_00352_6
crossref_primary_10_1016_j_apsadv_2025_100808
crossref_primary_10_5194_bg_20_929_2023
crossref_primary_10_1016_j_fuel_2020_119454
crossref_primary_10_1016_j_petrol_2021_109379
crossref_primary_10_1016_j_cej_2024_150483
crossref_primary_10_1016_j_cej_2024_152690
crossref_primary_10_3390_en15030944
crossref_primary_10_1016_j_cej_2024_156812
crossref_primary_10_1016_j_commatsci_2025_114198
crossref_primary_10_1016_j_cej_2021_132526
crossref_primary_10_1080_15567036_2020_1806954
crossref_primary_10_1016_j_ces_2020_116228
crossref_primary_10_1016_j_jpowsour_2019_227222
Cites_doi 10.1021/la991159w
10.1016/S1876-3804(15)30072-0
10.1016/0008-6223(95)00079-S
10.1038/srep23629
10.1016/j.colsurfa.2013.12.047
10.1006/jcis.1996.0334
10.1021/ie504030v
10.1016/S1876-3804(16)30045-3
10.1021/ef300405g
10.1016/j.jngse.2018.02.002
10.1103/PhysRevApplied.4.024018
10.1016/j.fuel.2017.09.065
10.1016/j.coal.2012.02.005
10.1306/09170404042
10.1021/ja02242a004
10.1002/ceat.201500617
10.1016/j.coal.2013.01.001
10.1021/la020682z
10.1016/j.marpetgeo.2015.08.012
10.1021/ef400381v
10.1016/j.marpetgeo.2016.02.033
10.2118/131772-PA
10.1016/j.jngse.2016.08.047
10.1021/acs.energyfuels.6b03168
10.1016/j.orggeochem.2012.03.012
10.1038/srep33461
10.1016/j.coal.2016.01.013
10.1016/S0008-6223(03)00152-0
10.1016/S0008-6223(97)00124-3
10.1177/0263617415623425
10.1007/s10450-008-9114-0
10.1021/ef0600614
10.1016/j.fuel.2015.12.074
10.1016/j.fuel.2017.03.083
10.1021/ja01269a023
10.1016/j.fuel.2016.07.088
10.1021/acs.energyfuels.5b02088
10.1016/j.coal.2015.09.004
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.marpetgeo.2019.04.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4073
EndPage 292
ExternalDocumentID 10_1016_j_marpetgeo_2019_04_036
S0264817219301862
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-a338t-68a61b78b69b8324ce41f43f147d19bf7eb909a693fdd43b48d34516433aa123
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469896400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-8172
IngestDate Tue Nov 18 22:36:33 EST 2025
Sat Nov 29 07:19:24 EST 2025
Fri Feb 23 02:32:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BET equation
Double-layer adsorption
Supercritical adsorption
Density of adsorbed phase
Adsorption mechanism
Shale gas
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a338t-68a61b78b69b8324ce41f43f147d19bf7eb909a693fdd43b48d34516433aa123
ORCID 0000-0003-0426-9683
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_marpetgeo_2019_04_036
crossref_primary_10_1016_j_marpetgeo_2019_04_036
elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2019_04_036
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationTitle Marine and petroleum geology
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bi, Jiang, Li, Li, Chen, Pan, Wu (bib5) 2016; 35
Mosher, He, Liu, Rupp, Wilcox (bib24) 2013
Clarkson, Bustin, Levy (bib9) 1997; 35
Li, Ding, Zhou, Cao, Zhang, Fu, Chen (bib20) 2017; 31
Clarkson, Haghshenas (bib8) 2013
Hao, Chu, Jiang, Yu (bib17) 2014; 444
Do (bib11) 1998
Wang, Li, Guo, Meng (bib33) 2016; 39
Langmuir (bib19) 1918; 40
Zhou, Zhou, Li, Chen, Wang (bib42) 2000; 16
Wang, Zhu, Liu, Zhang (bib32) 2016; 172
Shen, Li, Lu, Guo, Zhou, Wan (bib29) 2018
Zou, Dong, Wang, Li, Huang, Wang, Guan, Zhang, Wang, Liu, Bai, Liang, Lin, Zhao, Liu, Yang, Liang, Sun, Qiu (bib46) 2015; 42
Yu, Sepehrnoori, Patzek (bib39) 2014
Sakurovs, Day, Weir, Duffy (bib28) 2007; 21
Chareonsuppanimit, Mohammad, Robinson, Gasem (bib7) 2012; 95
Tang, Ripepi, Stadie, Yu, Hall (bib30) 2016; 185
Xiong, Liu, Liang, Zeng (bib37) 2017; 200
Ambrose, Hartman, Diaz-Campos, Akkutlu, Sondergeld (bib2) 2010
Curtis (bib10) 2002; 86
Gasparik, Ghanizadeh, Bertier, Gensterblum, Bouw, Krooss (bib16) 2012; 26
Tian, Li, Zhang, Xiao (bib31) 2016; 156
Rexer, Benham, Aplin, Thomas (bib27) 2013; 27
EIA (bib15) 2016
Aranovich, Donohue (bib4) 1996; 180
Liang, Bai, Zou, Wang, Wu, Ma, Zhang, Guo, Sun, Zhu, Cui, Liu (bib21) 2016; 43
Zhang, Ellis, Ruppel, Milliken, Yang (bib40) 2012; 47
Papaioannou, Kausik (bib26) 2015; 4
Wu, Chen, Li, Dong (bib36) 2016; 6
Ji, Song, Jiang, Chen, Li, Yang, Meng (bib18) 2015; 68
Luo, Wang, Wang, Jing, Lv, Zhai, Han (bib22) 2015
Zhou, Wang, Xue, Guo, Li (bib44) 2016; 36
Duan, Gu, Du, Xian (bib14) 2016; 30
Zhou, Xue, Ning, Guo, Zhang (bib45) 2018; 211
Do, Do (bib12) 2003; 41
Ambrose, Hartman, Diaz-Campos, Akkutlu, Sondergeld (bib3) 2012; 17
Brunauer, Emmett, Teller (bib6) 1938; 60
Xiong, Zuo, Luo, Hu, Cui (bib38) 2016; 34
Zhou, Bai, Su, Yang, Zhou (bib41) 2003; 19
Wu, Li, Wang, Yu, Chen (bib35) 2015; 54
Montgomery, Jarvie, Bowker, Pollastro (bib23) 2005; 89
Ottiger, Pini, Storti, Mazzotti (bib25) 2008; 14
Amankwah, Schwarz (bib1) 1995; 33
Wu, Zhang (bib34) 2016; 6
Zhou, Yan, Xue, Guo, Li (bib43) 2016; 73
Wu (10.1016/j.marpetgeo.2019.04.036_bib36) 2016; 6
Xiong (10.1016/j.marpetgeo.2019.04.036_bib38) 2016; 34
Wu (10.1016/j.marpetgeo.2019.04.036_bib35) 2015; 54
Do (10.1016/j.marpetgeo.2019.04.036_bib11) 1998
Montgomery (10.1016/j.marpetgeo.2019.04.036_bib23) 2005; 89
Clarkson (10.1016/j.marpetgeo.2019.04.036_bib9) 1997; 35
Gasparik (10.1016/j.marpetgeo.2019.04.036_bib16) 2012; 26
Tian (10.1016/j.marpetgeo.2019.04.036_bib31) 2016; 156
Mosher (10.1016/j.marpetgeo.2019.04.036_bib24) 2013
Zhou (10.1016/j.marpetgeo.2019.04.036_bib42) 2000; 16
Zou (10.1016/j.marpetgeo.2019.04.036_bib46) 2015; 42
Amankwah (10.1016/j.marpetgeo.2019.04.036_bib1) 1995; 33
Clarkson (10.1016/j.marpetgeo.2019.04.036_bib8) 2013
Shen (10.1016/j.marpetgeo.2019.04.036_bib29) 2018
Tang (10.1016/j.marpetgeo.2019.04.036_bib30) 2016; 185
Wang (10.1016/j.marpetgeo.2019.04.036_bib33) 2016; 39
Zhang (10.1016/j.marpetgeo.2019.04.036_bib40) 2012; 47
Luo (10.1016/j.marpetgeo.2019.04.036_bib22) 2015
Zhou (10.1016/j.marpetgeo.2019.04.036_bib43) 2016; 73
Zhou (10.1016/j.marpetgeo.2019.04.036_bib41) 2003; 19
Zhou (10.1016/j.marpetgeo.2019.04.036_bib45) 2018; 211
Duan (10.1016/j.marpetgeo.2019.04.036_bib14) 2016; 30
Yu (10.1016/j.marpetgeo.2019.04.036_bib39) 2014
Zhou (10.1016/j.marpetgeo.2019.04.036_bib44) 2016; 36
EIA (10.1016/j.marpetgeo.2019.04.036_bib15)
Chareonsuppanimit (10.1016/j.marpetgeo.2019.04.036_bib7) 2012; 95
Liang (10.1016/j.marpetgeo.2019.04.036_bib21) 2016; 43
Do (10.1016/j.marpetgeo.2019.04.036_bib12) 2003; 41
Aranovich (10.1016/j.marpetgeo.2019.04.036_bib4) 1996; 180
Bi (10.1016/j.marpetgeo.2019.04.036_bib5) 2016; 35
Hao (10.1016/j.marpetgeo.2019.04.036_bib17) 2014; 444
Langmuir (10.1016/j.marpetgeo.2019.04.036_bib19) 1918; 40
Ottiger (10.1016/j.marpetgeo.2019.04.036_bib25) 2008; 14
Papaioannou (10.1016/j.marpetgeo.2019.04.036_bib26) 2015; 4
Sakurovs (10.1016/j.marpetgeo.2019.04.036_bib28) 2007; 21
Xiong (10.1016/j.marpetgeo.2019.04.036_bib37) 2017; 200
Rexer (10.1016/j.marpetgeo.2019.04.036_bib27) 2013; 27
Ambrose (10.1016/j.marpetgeo.2019.04.036_bib3) 2012; 17
Li (10.1016/j.marpetgeo.2019.04.036_bib20) 2017; 31
Wu (10.1016/j.marpetgeo.2019.04.036_bib34) 2016; 6
Curtis (10.1016/j.marpetgeo.2019.04.036_bib10) 2002; 86
Wang (10.1016/j.marpetgeo.2019.04.036_bib32) 2016; 172
Ambrose (10.1016/j.marpetgeo.2019.04.036_bib2) 2010
Ji (10.1016/j.marpetgeo.2019.04.036_bib18) 2015; 68
Brunauer (10.1016/j.marpetgeo.2019.04.036_bib6) 1938; 60
References_xml – volume: 26
  start-page: 4995
  year: 2012
  end-page: 5004
  ident: bib16
  article-title: High-pressure methane sorption isotherms of black shales from The Netherlands
  publication-title: Energy Fuels
– volume: 54
  start-page: 3225
  year: 2015
  end-page: 3236
  ident: bib35
  article-title: Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs
  publication-title: Ind. Eng. Chem. Res.
– volume: 73
  start-page: 174
  year: 2016
  end-page: 180
  ident: bib43
  article-title: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM
  publication-title: Mar. Petrol. Geol.
– volume: 6
  start-page: 33461
  year: 2016
  ident: bib36
  article-title: Methane storage in nanoporous material at supercritical temperature over a wide range of pressures
  publication-title: Sci. Rep.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bib6
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– start-page: 36
  year: 2013
  end-page: 44
  ident: bib24
  article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems
  publication-title: Int. J. Coal Geol.
– volume: 47
  start-page: 120
  year: 2012
  end-page: 131
  ident: bib40
  article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
  publication-title: Org. Geochem.
– volume: 89
  start-page: 155
  year: 2005
  end-page: 175
  ident: bib23
  article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi–trillion cubic foot potential
  publication-title: AAPG Bull.
– volume: 39
  start-page: 1921
  year: 2016
  end-page: 1932
  ident: bib33
  article-title: Analyzing the adaption of different adsorption models for describing the shale gas adsorption law
  publication-title: Chem. Eng. Technol.
– volume: 211
  start-page: 140
  year: 2018
  end-page: 148
  ident: bib45
  article-title: Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane
  publication-title: Fuel
– volume: 444
  start-page: 104
  year: 2014
  end-page: 113
  ident: bib17
  article-title: Methane adsorption characteristics on coal surface above critical temperature through Dubinin-Astakhov model and Langmuir model
  publication-title: Colloids Surf., A
– volume: 30
  start-page: 2248
  year: 2016
  end-page: 2256
  ident: bib14
  article-title: Adsorption equilibrium of CO2 and CH4, and their mixture on Sichuan Basin shale
  publication-title: Energy Fuels
– year: 2014
  ident: bib39
  article-title: Modeling gas adsorption in Marcellus shale with Langmuir and BET Isotherms
  publication-title: SPE Annual Technical Conference and Exhibition
– volume: 4
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib26
  article-title: Methane Storage in nanoporous media as observed via high-field NMR relaxometry
  publication-title: Phys. Rev. Appl.
– volume: 185
  start-page: 10
  year: 2016
  end-page: 17
  ident: bib30
  article-title: A dual-site Langmuir equation for accurate estimation of high pressure deep shale gas resources
  publication-title: Fuel
– year: 2013
  ident: bib8
  article-title: Modeling of supercritical fluid adsorption on organic-rich shales and coal
  publication-title: Unconventional Resources Conference Held in the Woodlands
– volume: 6
  start-page: 23629
  year: 2016
  ident: bib34
  article-title: Impact of adsorption on gas transport in nanopores
  publication-title: Sci. Rep.
– volume: 68
  start-page: 94
  year: 2015
  end-page: 106
  ident: bib18
  article-title: Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China
  publication-title: Mar. Petrol. Geol.
– volume: 17
  start-page: 219
  year: 2012
  end-page: 229
  ident: bib3
  article-title: Shale gas-in-place calculations part I: new pore-scale considerations
  publication-title: SPE J.
– start-page: 210
  year: 2015
  end-page: 223
  ident: bib22
  article-title: Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China
  publication-title: Int. J. Coal Geol.
– volume: 200
  start-page: 299
  year: 2017
  end-page: 315
  ident: bib37
  article-title: Adsorption of methane in organic-rich shale nanopores: an experimental and molecular simulation study
  publication-title: Fuel
– volume: 14
  start-page: 539
  year: 2008
  end-page: 556
  ident: bib25
  article-title: Competitive adsorption equilibria of CO
  publication-title: Adsorption
– volume: 36
  start-page: 12
  year: 2016
  end-page: 20
  ident: bib44
  article-title: Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method
  publication-title: Nat. Gas. Ind.
– volume: 42
  start-page: 753
  year: 2015
  end-page: 767
  ident: bib46
  article-title: Shale gas in China: characteristics, challenges and prospects (II)
  publication-title: Petrol. Explor. Dev.
– volume: 180
  start-page: 537
  year: 1996
  end-page: 541
  ident: bib4
  article-title: Adsorption of supercritical fluids
  publication-title: J. Colloid Interface Sci.
– year: 1998
  ident: bib11
  article-title: Adsorption Analysis: Equilibria and Kinetics
– year: 2016
  ident: bib15
– volume: 35
  start-page: 114
  year: 2016
  end-page: 121
  ident: bib5
  article-title: The Ono–Kondo model and an experimental study on supercritical adsorption of shale gas: a case study on Longmaxi shale in southeastern Chongqing, China
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 43
  start-page: 386
  year: 2016
  end-page: 394
  ident: bib21
  article-title: Shale gas enrichment pattern and exploration significance of Wuxi-2 well in northeast Chongqing, NE Sichuan Basin
  publication-title: Petrol. Explor. Dev.
– volume: 16
  start-page: 5955
  year: 2000
  end-page: 5959
  ident: bib42
  article-title: Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon
  publication-title: Langmuir
– volume: 86
  start-page: 1921
  year: 2002
  end-page: 1938
  ident: bib10
  article-title: Fractured shale-gas systems
  publication-title: AAPG Bull.
– volume: 27
  start-page: 3099
  year: 2013
  end-page: 3109
  ident: bib27
  article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions
  publication-title: Energy Fuels
– volume: 40
  start-page: 1361
  year: 1918
  end-page: 1403
  ident: bib19
  article-title: The adsorption of gases on plane surfaces of glass, mica and platinum
  publication-title: J. Am. Chem. Soc.
– volume: 172
  start-page: 301
  year: 2016
  end-page: 309
  ident: bib32
  article-title: Methane adsorption measurements and modeling for organic-rich marine shale samples
  publication-title: Fuel
– year: 2018
  ident: bib29
  article-title: Experimental study and isotherm models of water vapor adsorption in shale rocks
  publication-title: J. Nat. Gas Sci. Eng.
– year: 2010
  ident: bib2
  article-title: New pore-scale considerations for shale gas in place calculations
  publication-title: SPE Unconventional Gas Conference Held in Pittsburgh
– volume: 34
  start-page: 193
  year: 2016
  end-page: 211
  ident: bib38
  article-title: Methane adsorption on shale under high temperature and high pressure of reservoir condition: experiments and supercritical adsorption modeling
  publication-title: Adsorpt. Sci. Technol.
– volume: 21
  start-page: 992
  year: 2007
  end-page: 997
  ident: bib28
  article-title: Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions
  publication-title: Energy Fuels
– volume: 19
  start-page: 2683
  year: 2003
  end-page: 2690
  ident: bib41
  article-title: Comparative study of the excess versus absolute adsorption of CO
  publication-title: Langmuir
– volume: 31
  start-page: 2625
  year: 2017
  end-page: 2635
  ident: bib20
  article-title: Investigation of the methane adsorption characteristics of marine shale: a case study of lower cambrian qiongzhusi shale in eastern yunnan province, south China
  publication-title: Energy Fuels
– volume: 156
  start-page: 36
  year: 2016
  end-page: 49
  ident: bib31
  article-title: Characterization of methane adsorption on overmature lower silurian–upper ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications
  publication-title: Int. J. Coal Geol.
– volume: 95
  start-page: 34
  year: 2012
  end-page: 46
  ident: bib7
  article-title: High-pressure adsorption of gases on shales: measurements and modeling
  publication-title: Int. J. Coal Geol.
– volume: 41
  start-page: 1777
  year: 2003
  end-page: 1791
  ident: bib12
  article-title: Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density
  publication-title: Carbon
– volume: 35
  start-page: 1689
  year: 1997
  end-page: 1705
  ident: bib9
  article-title: Application of the monolayer/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure
  publication-title: Carbon
– volume: 33
  start-page: 1313
  year: 1995
  end-page: 1319
  ident: bib1
  article-title: A modified approach for estimating pseudo- vapor pressures in the application of the Dubinin–Astakhov equation
  publication-title: Carbon
– year: 2013
  ident: 10.1016/j.marpetgeo.2019.04.036_bib8
  article-title: Modeling of supercritical fluid adsorption on organic-rich shales and coal
– volume: 16
  start-page: 5955
  issue: 14
  year: 2000
  ident: 10.1016/j.marpetgeo.2019.04.036_bib42
  article-title: Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon
  publication-title: Langmuir
  doi: 10.1021/la991159w
– volume: 42
  start-page: 753
  issue: 6
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.04.036_bib46
  article-title: Shale gas in China: characteristics, challenges and prospects (II)
  publication-title: Petrol. Explor. Dev.
  doi: 10.1016/S1876-3804(15)30072-0
– volume: 33
  start-page: 1313
  year: 1995
  ident: 10.1016/j.marpetgeo.2019.04.036_bib1
  article-title: A modified approach for estimating pseudo- vapor pressures in the application of the Dubinin–Astakhov equation
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00079-S
– volume: 6
  start-page: 23629
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib34
  article-title: Impact of adsorption on gas transport in nanopores
  publication-title: Sci. Rep.
  doi: 10.1038/srep23629
– volume: 444
  start-page: 104
  year: 2014
  ident: 10.1016/j.marpetgeo.2019.04.036_bib17
  article-title: Methane adsorption characteristics on coal surface above critical temperature through Dubinin-Astakhov model and Langmuir model
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2013.12.047
– volume: 180
  start-page: 537
  issue: 2
  year: 1996
  ident: 10.1016/j.marpetgeo.2019.04.036_bib4
  article-title: Adsorption of supercritical fluids
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0334
– volume: 54
  start-page: 3225
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.04.036_bib35
  article-title: Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie504030v
– volume: 43
  start-page: 386
  issue: 3
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib21
  article-title: Shale gas enrichment pattern and exploration significance of Wuxi-2 well in northeast Chongqing, NE Sichuan Basin
  publication-title: Petrol. Explor. Dev.
  doi: 10.1016/S1876-3804(16)30045-3
– year: 2014
  ident: 10.1016/j.marpetgeo.2019.04.036_bib39
  article-title: Modeling gas adsorption in Marcellus shale with Langmuir and BET Isotherms
– volume: 26
  start-page: 4995
  year: 2012
  ident: 10.1016/j.marpetgeo.2019.04.036_bib16
  article-title: High-pressure methane sorption isotherms of black shales from The Netherlands
  publication-title: Energy Fuels
  doi: 10.1021/ef300405g
– year: 2018
  ident: 10.1016/j.marpetgeo.2019.04.036_bib29
  article-title: Experimental study and isotherm models of water vapor adsorption in shale rocks
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2018.02.002
– year: 1998
  ident: 10.1016/j.marpetgeo.2019.04.036_bib11
– volume: 4
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.04.036_bib26
  article-title: Methane Storage in nanoporous media as observed via high-field NMR relaxometry
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.024018
– volume: 211
  start-page: 140
  year: 2018
  ident: 10.1016/j.marpetgeo.2019.04.036_bib45
  article-title: Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.09.065
– volume: 95
  start-page: 34
  year: 2012
  ident: 10.1016/j.marpetgeo.2019.04.036_bib7
  article-title: High-pressure adsorption of gases on shales: measurements and modeling
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2012.02.005
– volume: 89
  start-page: 155
  issue: 2
  year: 2005
  ident: 10.1016/j.marpetgeo.2019.04.036_bib23
  article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi–trillion cubic foot potential
  publication-title: AAPG Bull.
  doi: 10.1306/09170404042
– volume: 40
  start-page: 1361
  year: 1918
  ident: 10.1016/j.marpetgeo.2019.04.036_bib19
  article-title: The adsorption of gases on plane surfaces of glass, mica and platinum
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02242a004
– volume: 39
  start-page: 1921
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib33
  article-title: Analyzing the adaption of different adsorption models for describing the shale gas adsorption law
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201500617
– volume: 36
  start-page: 12
  issue: 11
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib44
  article-title: Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method
  publication-title: Nat. Gas. Ind.
– volume: 86
  start-page: 1921
  issue: 11
  year: 2002
  ident: 10.1016/j.marpetgeo.2019.04.036_bib10
  article-title: Fractured shale-gas systems
  publication-title: AAPG Bull.
– start-page: 36
  year: 2013
  ident: 10.1016/j.marpetgeo.2019.04.036_bib24
  article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2013.01.001
– volume: 19
  start-page: 2683
  issue: 7
  year: 2003
  ident: 10.1016/j.marpetgeo.2019.04.036_bib41
  article-title: Comparative study of the excess versus absolute adsorption of CO2 on superactivated carbon for the near-critical region
  publication-title: Langmuir
  doi: 10.1021/la020682z
– volume: 68
  start-page: 94
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.04.036_bib18
  article-title: Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2015.08.012
– year: 2010
  ident: 10.1016/j.marpetgeo.2019.04.036_bib2
  article-title: New pore-scale considerations for shale gas in place calculations
– volume: 27
  start-page: 3099
  year: 2013
  ident: 10.1016/j.marpetgeo.2019.04.036_bib27
  article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions
  publication-title: Energy Fuels
  doi: 10.1021/ef400381v
– volume: 73
  start-page: 174
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib43
  article-title: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2016.02.033
– volume: 17
  start-page: 219
  year: 2012
  ident: 10.1016/j.marpetgeo.2019.04.036_bib3
  article-title: Shale gas-in-place calculations part I: new pore-scale considerations
  publication-title: SPE J.
  doi: 10.2118/131772-PA
– volume: 35
  start-page: 114
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib5
  article-title: The Ono–Kondo model and an experimental study on supercritical adsorption of shale gas: a case study on Longmaxi shale in southeastern Chongqing, China
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.08.047
– volume: 31
  start-page: 2625
  issue: 3
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.04.036_bib20
  article-title: Investigation of the methane adsorption characteristics of marine shale: a case study of lower cambrian qiongzhusi shale in eastern yunnan province, south China
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b03168
– volume: 47
  start-page: 120
  year: 2012
  ident: 10.1016/j.marpetgeo.2019.04.036_bib40
  article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2012.03.012
– volume: 6
  start-page: 33461
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib36
  article-title: Methane storage in nanoporous material at supercritical temperature over a wide range of pressures
  publication-title: Sci. Rep.
  doi: 10.1038/srep33461
– ident: 10.1016/j.marpetgeo.2019.04.036_bib15
– volume: 156
  start-page: 36
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib31
  article-title: Characterization of methane adsorption on overmature lower silurian–upper ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2016.01.013
– volume: 41
  start-page: 1777
  issue: 9
  year: 2003
  ident: 10.1016/j.marpetgeo.2019.04.036_bib12
  article-title: Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00152-0
– volume: 35
  start-page: 1689
  issue: 12
  year: 1997
  ident: 10.1016/j.marpetgeo.2019.04.036_bib9
  article-title: Application of the monolayer/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00124-3
– volume: 34
  start-page: 193
  issue: 2–3
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib38
  article-title: Methane adsorption on shale under high temperature and high pressure of reservoir condition: experiments and supercritical adsorption modeling
  publication-title: Adsorpt. Sci. Technol.
  doi: 10.1177/0263617415623425
– volume: 14
  start-page: 539
  issue: 4–5
  year: 2008
  ident: 10.1016/j.marpetgeo.2019.04.036_bib25
  article-title: Competitive adsorption equilibria of CO2 and CH4 on a dry coal
  publication-title: Adsorption
  doi: 10.1007/s10450-008-9114-0
– volume: 21
  start-page: 992
  issue: 2
  year: 2007
  ident: 10.1016/j.marpetgeo.2019.04.036_bib28
  article-title: Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions
  publication-title: Energy Fuels
  doi: 10.1021/ef0600614
– volume: 172
  start-page: 301
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib32
  article-title: Methane adsorption measurements and modeling for organic-rich marine shale samples
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.12.074
– volume: 200
  start-page: 299
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.04.036_bib37
  article-title: Adsorption of methane in organic-rich shale nanopores: an experimental and molecular simulation study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.03.083
– volume: 60
  start-page: 309
  issue: 2
  year: 1938
  ident: 10.1016/j.marpetgeo.2019.04.036_bib6
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 185
  start-page: 10
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib30
  article-title: A dual-site Langmuir equation for accurate estimation of high pressure deep shale gas resources
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.07.088
– volume: 30
  start-page: 2248
  issue: 3
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.04.036_bib14
  article-title: Adsorption equilibrium of CO2 and CH4, and their mixture on Sichuan Basin shale
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b02088
– start-page: 210
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.04.036_bib22
  article-title: Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2015.09.004
SSID ssj0007901
Score 2.5113895
Snippet Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 284
SubjectTerms Adsorption mechanism
BET equation
Density of adsorbed phase
Double-layer adsorption
Shale gas
Supercritical adsorption
Title A modified BET equation to investigate supercritical methane adsorption mechanisms in shale
URI https://dx.doi.org/10.1016/j.marpetgeo.2019.04.036
Volume 105
WOSCitedRecordID wos000469896400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007901
  issn: 0264-8172
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkhwQLCAdpeHfOBWZZXUTmLvrUBhQWKFRA8VHCI7cdqs2qQ07VJ-CP-XsZ1XYaUFIS5RZXUSy_PFM57MzIfQC5fAoUFRAS8Skw6VhDqcyMSRifBjroiIU9eQTYQXF2w65R97vR91LczVIsxzttvx1X9VNYyBsnXp7F-ou7kpDMBvUDpcQe1w_SPFjzS7TZZq1_LleDJQX20zb-1kZk1TDTUotyu1jmuiA00kLcDfFElZrO0uslS6KDgrlyZjtpyLxV7W0Aeh6wZtnwGls93VdjmYqb0o_ed5sTXhVR2V_tYWnTVR6tdFPttlomjD-nb8HMa_d7KFTMrBFP44rwarOIUpjerGKZoCmjZbqTR9X6nDPMvec6rsHsxCAsday3DSbNKu391mLa1cZbGHlk3vN2Ng4xKXp0v9JWszM7WeHjedbckv7beNQf-kZ6MnA06t6zFt2Q-Goc9ZHx2M3o2n7xsTH3LDq93Mfi9x8NrHXe_2dFyZyX10rzqD4JHFzgPUU_khutvpTHmIbr-1mnyIvoxwjScMeMI1nvCmwB084T084QpPuMUTbvEEctjg6RGavBlPXp07FSOHIwhhGydgIvBkyGTAJZgCGivqpZSkHg0Tj8s0VJK7XAScpElCiaQsIZoJmhIiBPhIj1E_L3J1hDAcO1IhCFUk9qk3lDLxA8lomtB0SPw4PUZBvV5RXHWr16Qpi6hOS7yMmoWO9EJHLo1goY-R2wiubMOWm0XOaoVEld9p_ckIkHST8Mm_CD9Bd9pX5Snqb9Zb9Qzdiq82Wbl-XqHuJxfssDY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+BET+equation+to+investigate+supercritical+methane+adsorption+mechanisms+in+shale&rft.jtitle=Marine+and+petroleum+geology&rft.au=Zhou%2C+Shangwen&rft.au=Zhang%2C+Dongxiao&rft.au=Wang%2C+Hongyan&rft.au=Li%2C+Xiaohan&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0264-8172&rft.eissn=1873-4073&rft.volume=105&rft.spage=284&rft.epage=292&rft_id=info:doi/10.1016%2Fj.marpetgeo.2019.04.036&rft.externalDocID=S0264817219301862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon