Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings

The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation s...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 8; no. 8; pp. 19334 - 19352
Main Authors: Anjali, Mehra, Seema, Chugh, Renu, Haque, Salma, Mlaiki, Nabil
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2023
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to $ M $-norm, where $ M $ is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the $ M $-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2023986