BCSR on GPU: A Way Forward Extreme-scale Graph Processing on Accelerator-enabled Frontier Supercomputer

Handling large graphs in a distributed environment requires effective partitioning across processors and efficient management of local partitions. In 2D partitioning, local graphs often become too sparse, making memory-efficient data structures crucial. Using the Compressed Sparse Row (CSR) format w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 280 - 289
Hlavní autori: Sattar, Naw Safrin, Lu, Hao, Wang, Feiyi
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 17.11.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Handling large graphs in a distributed environment requires effective partitioning across processors and efficient management of local partitions. In 2D partitioning, local graphs often become too sparse, making memory-efficient data structures crucial. Using the Compressed Sparse Row (CSR) format wastes space, especially for > 83% of vertices with empty edges for the sparse graphs. This study explores bit-CSR (BCSR), a modified CSR representation, on GPUs to reduce memory usage in graph computations. We achieved 16.67% memory savings on a sparse rmat dataset with 268 million vertices and 357 million edges, without performance degradation, supported by both theoretical and experimental storage savings of 33%. However, we observed a 1.7× slowdown in degree lookup times due to bitwise operations on AMD CPUs. This analysis highlights the potential of BCSR on GPUs for improving Graph500 benchmark performance on GPU-accelerated systems, such as the Frontier supercomputer.
DOI:10.1109/SCW63240.2024.00044