Eigenvalue properties of Sturm-Liouville problems with transmission conditions dependent on the eigenparameter

This paper studies a discontinuous Sturm-Liouville problem in which the spectral parameter appears not only in the differential equation but also in the transmission conditions. By constructing an appropriate Hilbert space and inner product, the eigenvalue and eigenfunction problems of the Sturm-Lio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronic research archive Ročník 32; číslo 3; s. 1844 - 1863
Hlavní autori: Zhang, Lanfang, Ao, Jijun, Zhang, Na
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AIMS Press 01.01.2024
Predmet:
ISSN:2688-1594, 2688-1594
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies a discontinuous Sturm-Liouville problem in which the spectral parameter appears not only in the differential equation but also in the transmission conditions. By constructing an appropriate Hilbert space and inner product, the eigenvalue and eigenfunction problems of the Sturm-Liouville problem are transformed into an eigenvalue problem of a certain self-adjoint operator. Next, the eigenfunctions of the problem and some properties of the eigenvalues are given via construction of the basic solution. The Green's function for the Sturm-Liouville problem is also given. Finally, the continuity of the eigenvalues and eigenfunctions of the problem is discussed. Especially, the differential expressions of the eigenvalues for some parameters have been obtained, including the parameters in the eigenparameter-dependent transmission conditions.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2024084