Formation, Reactivity, and Catalytic Behavior of a Keggin Polyoxometalate/Bipyridine Hybrid in the Epoxidation of Cyclooctene with H2O2

The present study further explores the behavior of polyoxometalate-based hybrid compounds as catalysts for liquid-phase cyclooctene epoxidation with H2O2. Precisely, it unveils the nature of the relevant active species derived from the hybrid based on Keggin polyoxometalate (POM) and bipyridines (bp...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry Vol. 62; no. 22; p. 8576
Main Authors: Hidalgo, Gabriel, Barozzino-Consiglio, Gabriella, Robeyns, Koen, Devillers, Michel, Gaigneaux, Eric M
Format: Journal Article
Language:English
Published: 05.06.2023
ISSN:1520-510X, 1520-510X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study further explores the behavior of polyoxometalate-based hybrid compounds as catalysts for liquid-phase cyclooctene epoxidation with H2O2. Precisely, it unveils the nature of the relevant active species derived from the hybrid based on Keggin polyoxometalate (POM) and bipyridines (bpy) of formula (2,2'-Hbpy)3[PW12O40] (1). Whereas (i) it is generally accepted that the catalytic oxidation of organic substrates by H2O2 involving Keggin HPAs proceeds via an oxygen transfer route from a peroxo intermediate and (ii) the catalytically active peroxo species is commonly postulated to be the polyperoxotungstate {PO4[W(O)(O2)2]4}3- complex (PW4), we show that the studied epoxidation reaction seems to be more sophisticated than commonly reported. During the catalytic epoxidation, 1 underwent a partial transformation into two oxidized species, 2 and 3. Compound 3 corresponding to 2,2'-bipyridinium oxodiperoxotungstate of formula [WO(O2)2(2,2'-bpy)] was shown to be the main species responsible for the selective epoxidation of cyclooctene since 2 (in which the POM is associated with a protonated mono-N-oxide derivative of 2,2'-bpy of formula (2,2'-HbpyO)3[PW12O40]) exhibited no activity. The structures of 1, 2, and 3 were solved by single-crystal X-ray diffraction and were independently synthesized. The speciation of 1 was monitored under catalytic conditions by 1H and 1H DOSY NMR spectroscopies, where the formation in situ of 2 and 3 was revealed. A reaction mechanism is proposed that highlights the pivotal, yet often underestimated, role of H2O2 in the reached catalytic performances. The active species responsible for the oxygen transfer to cyclooctene is a hydroperoxide intermediate species that is formed by the interaction between the anionic structure of the catalyst and H2O2. The latter operates as a "conservative agent" whose presence in the catalytic system is required to prevent the catalysts from deactivating irreversibly.The present study further explores the behavior of polyoxometalate-based hybrid compounds as catalysts for liquid-phase cyclooctene epoxidation with H2O2. Precisely, it unveils the nature of the relevant active species derived from the hybrid based on Keggin polyoxometalate (POM) and bipyridines (bpy) of formula (2,2'-Hbpy)3[PW12O40] (1). Whereas (i) it is generally accepted that the catalytic oxidation of organic substrates by H2O2 involving Keggin HPAs proceeds via an oxygen transfer route from a peroxo intermediate and (ii) the catalytically active peroxo species is commonly postulated to be the polyperoxotungstate {PO4[W(O)(O2)2]4}3- complex (PW4), we show that the studied epoxidation reaction seems to be more sophisticated than commonly reported. During the catalytic epoxidation, 1 underwent a partial transformation into two oxidized species, 2 and 3. Compound 3 corresponding to 2,2'-bipyridinium oxodiperoxotungstate of formula [WO(O2)2(2,2'-bpy)] was shown to be the main species responsible for the selective epoxidation of cyclooctene since 2 (in which the POM is associated with a protonated mono-N-oxide derivative of 2,2'-bpy of formula (2,2'-HbpyO)3[PW12O40]) exhibited no activity. The structures of 1, 2, and 3 were solved by single-crystal X-ray diffraction and were independently synthesized. The speciation of 1 was monitored under catalytic conditions by 1H and 1H DOSY NMR spectroscopies, where the formation in situ of 2 and 3 was revealed. A reaction mechanism is proposed that highlights the pivotal, yet often underestimated, role of H2O2 in the reached catalytic performances. The active species responsible for the oxygen transfer to cyclooctene is a hydroperoxide intermediate species that is formed by the interaction between the anionic structure of the catalyst and H2O2. The latter operates as a "conservative agent" whose presence in the catalytic system is required to prevent the catalysts from deactivating irreversibly.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.3c00467