Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks
The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing neural networks (SONIA) and metaheuristic algorithms. In order to improve the accuracy of the SONIA model, several metaheuristic algorithms w...
Uloženo v:
| Vydáno v: | International journal of coal geology Ročník 275; s. 104294 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2023
|
| Témata: | |
| ISSN: | 0166-5162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing neural networks (SONIA) and metaheuristic algorithms. In order to improve the accuracy of the SONIA model, several metaheuristic algorithms were employed, including the Manta Ray Foraging Optimization (MRFO), Hunger Games Search (HGS), Aquila Optimization (AO), and Naked Mole-Rat Algorithm (NMRA). Additionally, the k-fold cross-validation technique was used to identify the best parameters for the algorithms, which were then used to retrain the models for predicting blast-induced ground vibration. The effectiveness of the proposed method was evaluated using a case study of an open-pit coal mine in Vietnam, which had 288 blasting events. The study found that SONIA was a suitable neural network for predicting blast-induced ground vibration due to its self-organizing structure, even with a small dataset containing complex relationships. However, the SONIA model could be further optimized using the metaheuristic algorithms to improve its accuracy. The study found that the MRFO-SONIA model was the most reliable and accurate, with the lowest error (MAE = 0.379, RMSE = 0.453, MAPE = 0.08) and the highest reliability (R2 = 0.896). Meanwhile, the HGS-SONIA, AO-SONIA, and NMRA-SONIA models provided lower performance, with MAE values of 0.455, 0.500, and 0.492, RMSE values of 0.552, 0.603, and 0.580, MAPE values of 0.100, 0.112, and 0.111, and R2 values of 0.845, 0.815, and 0.829, respectively. The results of this study demonstrated the potential of using metaheuristic-based SONIA models to enhance predictions of blast-induced ground vibration in open-pit mines. This approach could prove useful in other operations in open-pit mines where there is a need to predict vibrations or other disturbances/negative effects resulting from specific mining activities.
•Self-organizing neural network is applied to predict PPV at open-pit coal mine.•Advanced metaheuristic algorithms are applied to optimize the predictive model.•Advanced techniques in data mining are applied to evaluate the models.•The MRFO-SONIA model is proposed as the best model for predicting PPV. |
|---|---|
| AbstractList | The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing neural networks (SONIA) and metaheuristic algorithms. In order to improve the accuracy of the SONIA model, several metaheuristic algorithms were employed, including the Manta Ray Foraging Optimization (MRFO), Hunger Games Search (HGS), Aquila Optimization (AO), and Naked Mole-Rat Algorithm (NMRA). Additionally, the k-fold cross-validation technique was used to identify the best parameters for the algorithms, which were then used to retrain the models for predicting blast-induced ground vibration. The effectiveness of the proposed method was evaluated using a case study of an open-pit coal mine in Vietnam, which had 288 blasting events. The study found that SONIA was a suitable neural network for predicting blast-induced ground vibration due to its self-organizing structure, even with a small dataset containing complex relationships. However, the SONIA model could be further optimized using the metaheuristic algorithms to improve its accuracy. The study found that the MRFO-SONIA model was the most reliable and accurate, with the lowest error (MAE = 0.379, RMSE = 0.453, MAPE = 0.08) and the highest reliability (R2 = 0.896). Meanwhile, the HGS-SONIA, AO-SONIA, and NMRA-SONIA models provided lower performance, with MAE values of 0.455, 0.500, and 0.492, RMSE values of 0.552, 0.603, and 0.580, MAPE values of 0.100, 0.112, and 0.111, and R2 values of 0.845, 0.815, and 0.829, respectively. The results of this study demonstrated the potential of using metaheuristic-based SONIA models to enhance predictions of blast-induced ground vibration in open-pit mines. This approach could prove useful in other operations in open-pit mines where there is a need to predict vibrations or other disturbances/negative effects resulting from specific mining activities.
•Self-organizing neural network is applied to predict PPV at open-pit coal mine.•Advanced metaheuristic algorithms are applied to optimize the predictive model.•Advanced techniques in data mining are applied to evaluate the models.•The MRFO-SONIA model is proposed as the best model for predicting PPV. |
| ArticleNumber | 104294 |
| Author | Bui, Xuan-Nam Topal, Erkan Nguyen, Hoang |
| Author_xml | – sequence: 1 givenname: Hoang surname: Nguyen fullname: Nguyen, Hoang email: nguyenhoang@humg.edu.vn organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Ward, Bac Tu Liem Distr., Hanoi 100000, Viet Nam – sequence: 2 givenname: Xuan-Nam surname: Bui fullname: Bui, Xuan-Nam organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Ward, Bac Tu Liem Distr., Hanoi 100000, Viet Nam – sequence: 3 givenname: Erkan surname: Topal fullname: Topal, Erkan organization: Mining Engineering Metallurgical Engineering Department, Western Australian School of Mines (WASM), Curtin University, Western Australia, Australia |
| BookMark | eNp9kLtOxDAQRV2AxC7wA1T-gSxj50UQDVrxklaigdpybCc7S2JHthcE38OHkhBoKKhGmjtnpHuW5MA6awg5Y7BiwIrz3Uo52a048HRcZLzKDshiDIokZwU_IssQdgCshCxfkM8bu5VWoW3p4I1GFdHZQF1D606GmKDVe2U0bb3bW01fsfZyOqFoqRuMTQaMtEdrwiVdu36QfnoV3qTvk1qGkXRDxB4_Zkp2rfMYt32g0f1GhgbTNYnzrbT4MfHW7L3sxhHfnH8JJ-SwkV0wpz_zmDzf3jyt75PN493D-nqTyJSnMeGsYjLPqhLyHBg0UEMJikORc5Bp2ihV1XXJ6vzC1JyxQmmjU86KTINOoanSY8Lnv8q7ELxpxOCxl_5dMBCTW7ETk1sxuRWz2xG6-AMpjN9to5fY_Y9ezagZS72i8SIoNHb0jd6oKLTD__AvgXidsg |
| CitedBy_id | crossref_primary_10_1016_j_jrmge_2024_09_002 crossref_primary_10_1016_j_dt_2025_06_019 crossref_primary_10_1007_s11053_025_10518_6 crossref_primary_10_26599_Jic_2025_9180087 crossref_primary_10_3390_app14093759 crossref_primary_10_1080_17480930_2025_2552707 crossref_primary_10_1007_s11053_024_10443_0 crossref_primary_10_3390_geosciences15050182 crossref_primary_10_1038_s41598_024_81218_z crossref_primary_10_1007_s11053_024_10329_1 crossref_primary_10_1007_s11053_025_10546_2 crossref_primary_10_1016_j_eswa_2025_127654 crossref_primary_10_1007_s00603_024_03801_0 crossref_primary_10_3390_eng6080169 crossref_primary_10_1080_15376494_2025_2496758 |
| Cites_doi | 10.3390/app10041403 10.1007/s00366-017-0501-6 10.1007/s00366-016-0475-9 10.1007/s11053-019-09515-3 10.1007/s12517-013-1174-0 10.1016/j.egyr.2022.07.153 10.1016/j.jmrt.2021.07.031 10.1016/j.ijmst.2021.01.007 10.1016/j.ijrmms.2015.03.020 10.1007/s11053-019-09597-z 10.1007/s11053-019-09573-7 10.1016/j.asej.2020.07.009 10.1007/s00366-021-01444-1 10.1007/s11600-019-00268-4 10.1007/s12665-017-6864-6 10.1007/s00366-016-0497-3 10.1016/j.jeconom.2022.04.007 10.1016/j.jrmge.2018.07.004 10.1007/s00366-020-00997-x 10.1007/s11053-021-09968-5 10.3390/s20010132 10.1007/s11600-020-00532-y 10.1007/s00366-021-01393-9 10.1179/037178409X405741 10.1007/s00366-010-0193-7 10.1007/s11053-021-09890-w 10.1038/s41598-019-50262-5 10.1007/s10064-014-0657-x 10.1016/j.eswa.2021.114864 10.1007/s11053-019-09548-8 10.1080/17480930.2022.2131137 10.1016/j.engappai.2019.103300 10.1016/j.ijrmms.2021.104856 10.1007/s11053-021-09903-8 10.1016/j.asoc.2004.10.008 10.1007/s00366-020-01136-2 10.1007/s11053-019-09503-7 10.1007/s00521-016-2577-0 10.1007/s11053-021-09823-7 10.3390/app10020434 10.1007/s11053-020-09764-7 10.1007/s00366-021-01332-8 10.1177/1077546314568172 10.1016/j.solener.2020.06.108 10.1016/j.measurement.2019.106874 10.1016/j.soildyn.2019.01.011 10.1007/s00254-007-1143-6 10.1016/j.cie.2021.107250 10.1016/j.ijrmms.2010.01.007 10.1007/s00521-020-04822-w 10.1016/j.rineng.2022.100399 10.1016/j.soildyn.2020.106390 10.1007/s12665-016-5961-2 10.1007/s13762-017-1395-y 10.1007/s11053-019-09492-7 10.1109/TKDE.2019.2912815 10.1007/s11053-021-09896-4 10.1016/j.soildyn.2010.05.005 10.1007/s00366-016-0442-5 10.1007/s00366-020-00937-9 10.1016/j.ijrmms.2012.03.011 10.1016/j.ijhydene.2021.12.222 10.1007/s00366-017-0546-6 10.1016/j.ijrmms.2009.03.004 10.1016/j.asoc.2019.01.042 10.1007/s11053-019-09470-z 10.1007/s00366-016-0448-z 10.1016/j.eswa.2022.118999 10.1016/j.ress.2022.109032 10.1016/j.asoc.2021.107434 10.1007/s42452-020-03611-3 10.1016/j.ijmst.2015.09.020 10.1016/j.measurement.2015.07.019 10.1007/s12665-019-8491-x |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.coal.2023.104294 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_coal_2023_104294 S016651622300112X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JARJE KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSE SSR SSZ T5K TN5 ~02 ~G- 29J 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- SAC SEP SEW UHS VH1 WUQ XPP ZMT ZY4 ~HD |
| ID | FETCH-LOGICAL-a323t-2191a5497055010f0b070c206520a33fcc9bb71b58eb2116cded32164d0d30f93 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029045400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-5162 |
| IngestDate | Sat Nov 29 07:22:59 EST 2025 Tue Nov 18 22:32:09 EST 2025 Tue Dec 03 03:44:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FFA DE HPSOGWO PR BNN dh UCS ELM QRNN RVM MRFO NMRA Peak particle velocity BBO MLP CSmj QC ANFIS DOE ML Hh BGAMs BCF SpaSO AI MAPE VOD HKM PSO AO FCM GEP RF HGS JA SONIA ν AutoencoderNN CART ANN RS ABC B D E BI El H SaDE SRH KNN K SVM BO HHO SC Q BSVR R GBM S XGBoost MFO PPV GA Nh Self-organizing neural network GD Tdl Applied soft computing CA CSO GWO ST f ICA Nblast_group Open-pit coal mine WOA CL Pν SCA Sd AGPSO CRANFIS Blast-induced ground vibration PE MARS PF RMR Metaheuristic optimization algorithm HD IM-ANN GFNN |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a323t-2191a5497055010f0b070c206520a33fcc9bb71b58eb2116cded32164d0d30f93 |
| ParticipantIDs | crossref_primary_10_1016_j_coal_2023_104294 crossref_citationtrail_10_1016_j_coal_2023_104294 elsevier_sciencedirect_doi_10_1016_j_coal_2023_104294 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of coal geology |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Dindarloo (bb0085) 2015; 25 Bui (bb0070) 2021; 30 Nguyen (bb0220) 2019; 77 Nguyen, Bui, Topal (bb0250) 2023; 231 Wang (bb0305) 2022; 47 Zhu, Nikafshan Rad, Hasanipanah (bb0380) 2021; 108 Ding (bb0090) 2020; 29 Fattahi, Hasanipanah (bb0110) 2021; 30 Nguyen (bb0215) 2019; 20 Ghasemi, Sari, Ataei (bb0115) 2012; 52 Amiri (bb0025) 2016; 32 Arthur, Temeng, Ziggah (bb0050) 2020; 2 Abualigah (bb0010) 2021; 157 Jahed Armaghani (bb0160) 2021; 37 Li (bb0190) 2020; 10 AbuShanab (bb0015) 2021; 14 Bui (bb0060) 2019; 9 Bui (bb0065) 2020; 29 Hasanipanah (bb0135) 2017; 33 Arthur, Temeng, Ziggah (bb0045) 2019 Yang (bb0325) 2020; 29 Khandelwal, Singh (bb0175) 2009; 46 Sheykhi (bb0285) 2018; 34 Amiri, Hasanipanah, Bakhshandeh Amnieh (bb0030) 2020; 32 Verma, Singh (bb0300) 2011; 27 Agrawal, Mishra (bb0020) 2019; 11 Ofori-Ntow Jnr (bb0255) 2022; 14 Khandelwal (bb0170) 2010; 47 Singh, Dontha, Bhardwaj (bb0290) 2008; 117 Ghoraba (bb0120) 2016; 75 Azimi, Khoshrou, Osanloo (bb0055) 2019; 147 Faradonbeh, Monjezi (bb0100) 2017; 33 Iphar, Yavuz, Ak (bb0155) 2008; 56 Hosseini (bb0150) 2019; 119 Zhou (bb0375) 2021; 145 Nguyen (bb0225) 2019; 67 Nguyen (bb0230) 2019; 78 Widyanto (bb0310) 2005; 6 Zhao, Zhang, Wang (bb0360) 2020; 87 Raschka (bb0265) 2018 Yu (bb0345) 2022; 38 Nguyen (bb0235) 2020; 29 Hajihassani (bb0125) 2015; 74 Yang (bb0320) 2019; 29 Armaghani (bb0040) 2018; 29 Abbaszadeh Shahri (bb0005) 2022; 38 Taheri (bb0295) 2017; 33 Zhang (bb0355) 2020; 29 Bui (bb0075) 2021; 30 Shahnazar (bb0275) 2017; 76 Yang (bb0330) 2021; 177 Yu (bb0340) 2020; 10 Armaghani (bb0035) 2014; 7 Saadat, Hasanzade, Khandelwal (bb0270) 2015; 77 Wong, Yeh (bb0315) 2019; 32 Fathy, Rezk, Yousri (bb0105) 2020; 207 Nguyen (bb0240) 2021; 30 Monjezi (bb0200) 2016; 32 Shang (bb0280) 2019; 29 Lawal, Kwon, Kim (bb0185) 2021; 69 Yousri (bb0335) 2022; 8 Ding (bb0095) 2021; 37 Nguyen, Bui (bb0210) 2022; 36 Ke (bb0165) 2021; 30 Zhang, Liu (bb0350) 2023; 235 Lawal (bb0180) 2021; 31 Monjezi (bb0195) 2010; 30 Qiu (bb0260) 2022; 38 Cao (bb0080) 2023; 213 Zhou, Shi, Li (bb0365) 2016; 22 Hasanipanah (bb0140) 2018; 15 Nguyen (bb0245) 2022; 38 Hemeida (bb0145) 2021; 12 Hasanipanah (bb0130) 2015; 75 Zhou (bb0370) 2020; 139 Nguyen, Bui (bb0205) 2021; 30 Azimi (10.1016/j.coal.2023.104294_bb0055) 2019; 147 Hasanipanah (10.1016/j.coal.2023.104294_bb0135) 2017; 33 Nguyen (10.1016/j.coal.2023.104294_bb0205) 2021; 30 Nguyen (10.1016/j.coal.2023.104294_bb0235) 2020; 29 Wang (10.1016/j.coal.2023.104294_bb0305) 2022; 47 Nguyen (10.1016/j.coal.2023.104294_bb0250) 2023; 231 Singh (10.1016/j.coal.2023.104294_bb0290) 2008; 117 Yousri (10.1016/j.coal.2023.104294_bb0335) 2022; 8 Yang (10.1016/j.coal.2023.104294_bb0320) 2019; 29 Monjezi (10.1016/j.coal.2023.104294_bb0200) 2016; 32 Faradonbeh (10.1016/j.coal.2023.104294_bb0100) 2017; 33 AbuShanab (10.1016/j.coal.2023.104294_bb0015) 2021; 14 Nguyen (10.1016/j.coal.2023.104294_bb0225) 2019; 67 Lawal (10.1016/j.coal.2023.104294_bb0180) 2021; 31 Zhou (10.1016/j.coal.2023.104294_bb0365) 2016; 22 Agrawal (10.1016/j.coal.2023.104294_bb0020) 2019; 11 Nguyen (10.1016/j.coal.2023.104294_bb0230) 2019; 78 Zhou (10.1016/j.coal.2023.104294_bb0370) 2020; 139 Zhou (10.1016/j.coal.2023.104294_bb0375) 2021; 145 Arthur (10.1016/j.coal.2023.104294_bb0045) 2019 Hajihassani (10.1016/j.coal.2023.104294_bb0125) 2015; 74 Yang (10.1016/j.coal.2023.104294_bb0325) 2020; 29 Hemeida (10.1016/j.coal.2023.104294_bb0145) 2021; 12 Ghasemi (10.1016/j.coal.2023.104294_bb0115) 2012; 52 Widyanto (10.1016/j.coal.2023.104294_bb0310) 2005; 6 Arthur (10.1016/j.coal.2023.104294_bb0050) 2020; 2 Bui (10.1016/j.coal.2023.104294_bb0075) 2021; 30 Zhao (10.1016/j.coal.2023.104294_bb0360) 2020; 87 Taheri (10.1016/j.coal.2023.104294_bb0295) 2017; 33 Sheykhi (10.1016/j.coal.2023.104294_bb0285) 2018; 34 Ding (10.1016/j.coal.2023.104294_bb0090) 2020; 29 Iphar (10.1016/j.coal.2023.104294_bb0155) 2008; 56 Bui (10.1016/j.coal.2023.104294_bb0060) 2019; 9 Shang (10.1016/j.coal.2023.104294_bb0280) 2019; 29 Ding (10.1016/j.coal.2023.104294_bb0095) 2021; 37 Amiri (10.1016/j.coal.2023.104294_bb0030) 2020; 32 Qiu (10.1016/j.coal.2023.104294_bb0260) 2022; 38 Nguyen (10.1016/j.coal.2023.104294_bb0240) 2021; 30 Nguyen (10.1016/j.coal.2023.104294_bb0220) 2019; 77 Armaghani (10.1016/j.coal.2023.104294_bb0040) 2018; 29 Khandelwal (10.1016/j.coal.2023.104294_bb0175) 2009; 46 Hasanipanah (10.1016/j.coal.2023.104294_bb0130) 2015; 75 Armaghani (10.1016/j.coal.2023.104294_bb0035) 2014; 7 Zhu (10.1016/j.coal.2023.104294_bb0380) 2021; 108 Nguyen (10.1016/j.coal.2023.104294_bb0215) 2019; 20 Zhang (10.1016/j.coal.2023.104294_bb0350) 2023; 235 Nguyen (10.1016/j.coal.2023.104294_bb0245) 2022; 38 Abbaszadeh Shahri (10.1016/j.coal.2023.104294_bb0005) 2022; 38 Monjezi (10.1016/j.coal.2023.104294_bb0195) 2010; 30 Fattahi (10.1016/j.coal.2023.104294_bb0110) 2021; 30 Ke (10.1016/j.coal.2023.104294_bb0165) 2021; 30 Khandelwal (10.1016/j.coal.2023.104294_bb0170) 2010; 47 Nguyen (10.1016/j.coal.2023.104294_bb0210) 2022; 36 Yang (10.1016/j.coal.2023.104294_bb0330) 2021; 177 Ghoraba (10.1016/j.coal.2023.104294_bb0120) 2016; 75 Raschka (10.1016/j.coal.2023.104294_bb0265) 2018 Wong (10.1016/j.coal.2023.104294_bb0315) 2019; 32 Yu (10.1016/j.coal.2023.104294_bb0340) 2020; 10 Cao (10.1016/j.coal.2023.104294_bb0080) 2023; 213 Hosseini (10.1016/j.coal.2023.104294_bb0150) 2019; 119 Jahed Armaghani (10.1016/j.coal.2023.104294_bb0160) 2021; 37 Yu (10.1016/j.coal.2023.104294_bb0345) 2022; 38 Bui (10.1016/j.coal.2023.104294_bb0065) 2020; 29 Lawal (10.1016/j.coal.2023.104294_bb0185) 2021; 69 Li (10.1016/j.coal.2023.104294_bb0190) 2020; 10 Abualigah (10.1016/j.coal.2023.104294_bb0010) 2021; 157 Dindarloo (10.1016/j.coal.2023.104294_bb0085) 2015; 25 Zhang (10.1016/j.coal.2023.104294_bb0355) 2020; 29 Fathy (10.1016/j.coal.2023.104294_bb0105) 2020; 207 Amiri (10.1016/j.coal.2023.104294_bb0025) 2016; 32 Verma (10.1016/j.coal.2023.104294_bb0300) 2011; 27 Bui (10.1016/j.coal.2023.104294_bb0070) 2021; 30 Hasanipanah (10.1016/j.coal.2023.104294_bb0140) 2018; 15 Saadat (10.1016/j.coal.2023.104294_bb0270) 2015; 77 Shahnazar (10.1016/j.coal.2023.104294_bb0275) 2017; 76 Ofori-Ntow Jnr (10.1016/j.coal.2023.104294_bb0255) 2022; 14 |
| References_xml | – volume: 30 start-page: 2663 year: 2021 end-page: 2685 ident: bb0070 article-title: Predicting ground vibrations due to mine blasting using a novel artificial neural network-based cuckoo search optimization publication-title: Nat. Resour. Res. – volume: 12 start-page: 609 year: 2021 end-page: 619 ident: bb0145 article-title: Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO) publication-title: Ain Shams Eng. J. – volume: 69 start-page: 161 year: 2021 end-page: 174 ident: bb0185 article-title: Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame optimized ANN, and gene expression programming publication-title: Acta Geophys. – volume: 30 start-page: 3853 year: 2021 end-page: 3864 ident: bb0165 article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model publication-title: Nat. Resour. Res. – volume: 29 start-page: 691 year: 2020 end-page: 709 ident: bb0235 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Nat. Resour. Res. – volume: 139 year: 2020 ident: bb0370 article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models publication-title: Soil Dyn. Earthq. Eng. – volume: 117 start-page: 116 year: 2008 end-page: 121 ident: bb0290 article-title: Study into blast vibration and frequency using ANFIS and MVRA publication-title: Min. Technol. – volume: 29 start-page: 739 year: 2019 end-page: 750 ident: bb0320 article-title: Intelligent Prediction of Blasting-Induced Ground Vibration using ANFIS Optimized by GA and PSO publication-title: Nat. Resour. Res. – volume: 33 start-page: 689 year: 2017 end-page: 700 ident: bb0295 article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration publication-title: Eng. Comput. – volume: 33 start-page: 307 year: 2017 end-page: 316 ident: bb0135 article-title: Forecasting blast-induced ground vibration developing a CART model publication-title: Eng. Comput. – volume: 29 start-page: 723 year: 2019 end-page: 737 ident: bb0280 article-title: A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network publication-title: Nat. Resour. Res. – start-page: 1 year: 2019 end-page: 25 ident: bb0045 article-title: Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction publication-title: Int. J. Min. Reclam. Environ. – volume: 20 start-page: 132 year: 2019 ident: bb0215 article-title: Predicting Blast-Induced Ground Vibration in Open-pit Mines using Vibration Sensors and support Vector Regression-based Optimization Algorithms publication-title: Sensors – volume: 14 start-page: 1482 year: 2021 end-page: 1493 ident: bb0015 article-title: A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials publication-title: J. Mater. Res. Technol. – volume: 74 start-page: 873 year: 2015 end-page: 886 ident: bb0125 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bull. Eng. Geol. Environ. – volume: 177 start-page: 114864 year: 2021 ident: bb0330 article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. – volume: 15 start-page: 551 year: 2018 end-page: 560 ident: bb0140 article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system publication-title: Int. J. Environ. Sci. Technol. – volume: 157 year: 2021 ident: bb0010 article-title: Aquila Optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. – volume: 34 start-page: 357 year: 2018 end-page: 365 ident: bb0285 article-title: Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering publication-title: Eng. Comput. – volume: 77 start-page: 376 year: 2019 end-page: 386 ident: bb0220 article-title: A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms publication-title: Appl. Soft Comput. – volume: 108 year: 2021 ident: bb0380 article-title: A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting publication-title: Appl. Soft Comput. – volume: 87 year: 2020 ident: bb0360 article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. – volume: 78 start-page: 479 year: 2019 ident: bb0230 article-title: Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam publication-title: Environ. Earth Sci. – volume: 32 start-page: 717 year: 2016 end-page: 728 ident: bb0200 article-title: Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques publication-title: Eng. Comput. – volume: 37 start-page: 3221 year: 2021 end-page: 3235 ident: bb0160 article-title: A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine publication-title: Eng. Comput. – volume: 22 start-page: 3986 year: 2016 end-page: 3997 ident: bb0365 article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining publication-title: J. Vib. Control. – volume: 33 start-page: 835 year: 2017 end-page: 851 ident: bb0100 article-title: Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms publication-title: Eng. Comput. – volume: 77 start-page: 97 year: 2015 end-page: 104 ident: bb0270 article-title: Differential evolution algorithm for predicting blast induced ground vibrations publication-title: Int. J. Rock Mech. Min. Sci. – volume: 56 start-page: 97 year: 2008 end-page: 107 ident: bb0155 article-title: Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system publication-title: Environ. Geol. – volume: 29 start-page: 807 year: 2020 end-page: 830 ident: bb0325 article-title: Prediction of vibration velocity generated in mine blasting using support vector regression improved by optimization algorithms publication-title: Nat. Resour. Res. – volume: 30 start-page: 4719 year: 2021 end-page: 4734 ident: bb0075 article-title: Predicting blast-induced ground vibration in quarries using adaptive fuzzy inference neural network and Moth–Flame optimization publication-title: Nat. Resour. Res. – volume: 27 start-page: 225 year: 2011 end-page: 233 ident: bb0300 article-title: Intelligent systems for ground vibration measurement: a comparative study publication-title: Eng. Comput. – volume: 67 start-page: 477 year: 2019 end-page: 490 ident: bb0225 article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study publication-title: Acta Geophys. – volume: 14 year: 2022 ident: bb0255 article-title: A hybrid chaotic-based discrete wavelet transform and Aquila optimisation tuned-artificial neural network approach for wind speed prediction publication-title: Results Eng. – volume: 32 start-page: 14681 year: 2020 end-page: 14699 ident: bb0030 article-title: Predicting ground vibration induced by rock blasting using a novel hybrid of neural network and itemset mining publication-title: Neural Comput. & Applic. – volume: 11 start-page: 202 year: 2019 end-page: 207 ident: bb0020 article-title: Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting publication-title: J. Rock Mech. Geotech. Eng. – volume: 76 start-page: 527 year: 2017 ident: bb0275 article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model publication-title: Environ. Earth Sci. – volume: 231 year: 2023 ident: bb0250 article-title: Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings publication-title: Reliab. Eng. Syst. Saf. – volume: 30 start-page: 1849 year: 2021 end-page: 1863 ident: bb0110 article-title: Prediction of blast-induced ground vibration in a mine using relevance vector regression optimized by metaheuristic algorithms publication-title: Nat. Resour. Res. – volume: 29 start-page: 711 year: 2020 end-page: 721 ident: bb0355 article-title: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost publication-title: Nat. Resour. Res. – volume: 32 start-page: 631 year: 2016 end-page: 644 ident: bb0025 article-title: A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure publication-title: Eng. Comput. – volume: 47 start-page: 8943 year: 2022 end-page: 8955 ident: bb0305 article-title: An optimal configuration for hybrid SOFC, gas turbine, and Proton Exchange Membrane Electrolyzer using a developed Aquila Optimizer publication-title: Int. J. Hydrog. Energy – volume: 32 start-page: 1586 year: 2019 end-page: 1594 ident: bb0315 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 29 start-page: 751 year: 2020 end-page: 769 ident: bb0090 article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms publication-title: Nat. Resour. Res. – volume: 38 start-page: 3335 year: 2022 end-page: 3349 ident: bb0005 article-title: Automated intelligent hybrid computing schemes to predict blasting induced ground vibration publication-title: Eng. Comput. – volume: 75 start-page: 289 year: 2015 end-page: 297 ident: bb0130 article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine publication-title: Measurement – volume: 10 start-page: 434 year: 2020 ident: bb0190 article-title: Developing a new computational intelligence approach for approximating the blast-induced ground vibration publication-title: Appl. Sci. – volume: 30 start-page: 1233 year: 2010 end-page: 1236 ident: bb0195 article-title: Predicting blast-induced ground vibration using various types of neural networks publication-title: Soil Dyn. Earthq. Eng. – volume: 213 year: 2023 ident: bb0080 article-title: Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization publication-title: Expert Syst. Appl. – volume: 75 start-page: 1137 year: 2016 ident: bb0120 article-title: Estimation of ground vibration produced by blasting operations through intelligent and empirical models publication-title: Environ. Earth Sci. – volume: 46 start-page: 1214 year: 2009 end-page: 1222 ident: bb0175 article-title: Prediction of blast-induced ground vibration using artificial neural network publication-title: Int. J. Rock Mech. Min. Sci. – volume: 52 start-page: 163 year: 2012 end-page: 170 ident: bb0115 article-title: Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines publication-title: Int. J. Rock Mech. Min. Sci. – volume: 38 start-page: 1905 year: 2022 end-page: 1920 ident: bb0345 article-title: A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration publication-title: Eng. Comput. – volume: 47 start-page: 509 year: 2010 end-page: 516 ident: bb0170 article-title: Evaluation and prediction of blast-induced ground vibration using support vector machine publication-title: Int. J. Rock Mech. Min. Sci. – volume: 38 start-page: 4145 year: 2022 end-page: 4162 ident: bb0260 article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration publication-title: Eng. Comput. – volume: 235 start-page: 280 year: 2023 end-page: 301 ident: bb0350 article-title: Model averaging prediction by K-fold cross-validation publication-title: J. Econ. – volume: 8 start-page: 9805 year: 2022 end-page: 9827 ident: bb0335 article-title: Mitigating mismatch power loss of series–parallel and total-cross-tied array configurations using novel enhanced heterogeneous hunger games search optimizer publication-title: Energy Rep. – volume: 29 start-page: 457 year: 2018 end-page: 465 ident: bb0040 article-title: Feasibility of ICA in approximating ground vibration resulting from mine blasting publication-title: Neural Comput. & Applic. – volume: 119 start-page: 118 year: 2019 end-page: 129 ident: bb0150 article-title: Prediction of blast-induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS publication-title: Soil Dyn. Earthq. Eng. – volume: 31 start-page: 265 year: 2021 end-page: 277 ident: bb0180 article-title: Blast-induced ground vibration prediction in granite quarries: an application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN publication-title: Int. J. Min. Sci. Technol. – volume: 29 start-page: 771 year: 2020 end-page: 790 ident: bb0065 article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system publication-title: Nat. Resour. Res. – volume: 6 start-page: 72 year: 2005 end-page: 84 ident: bb0310 article-title: Improving recognition and generalization capability of back-propagation NN using a self-organized network inspired by immune algorithm (SONIA) publication-title: Appl. Soft Comput. – volume: 7 start-page: 5383 year: 2014 end-page: 5396 ident: bb0035 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab. J. Geosci. – volume: 147 year: 2019 ident: bb0055 article-title: Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network publication-title: Measurement – volume: 9 start-page: 1 year: 2019 end-page: 14 ident: bb0060 article-title: A novel Hybrid Model for predicting Blast-induced Ground Vibration based on k-nearest neighbors and particle Swarm optimization publication-title: Sci. Rep. – volume: 145 year: 2021 ident: bb0375 article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations publication-title: Int. J. Rock Mech. Min. Sci. – volume: 37 start-page: 2273 year: 2021 end-page: 2284 ident: bb0095 article-title: Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with firefly algorithm publication-title: Eng. Comput. – volume: 30 start-page: 4695 year: 2021 end-page: 4717 ident: bb0240 article-title: Predicting blast-induced ground vibration in open-pit mines using different nature-inspired optimization algorithms and deep neural network publication-title: Nat. Resour. Res. – volume: 10 start-page: 1403 year: 2020 ident: bb0340 article-title: Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris Hawks optimization algorithm publication-title: Appl. Sci. – volume: 207 start-page: 305 year: 2020 end-page: 316 ident: bb0105 article-title: A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm publication-title: Sol. Energy – volume: 38 start-page: 4007 year: 2022 end-page: 4025 ident: bb0245 article-title: Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS–PSO–MLP model publication-title: Eng. Comput. – year: 2018 ident: bb0265 article-title: Model evaluation, model selection, and algorithm selection in machine learning – volume: 25 start-page: 1011 year: 2015 end-page: 1015 ident: bb0085 article-title: Prediction of blast-induced ground vibrations via genetic programming publication-title: Int. J. Min. Sci. Technol. – volume: 2 start-page: 1845 year: 2020 ident: bb0050 article-title: A Self-adaptive differential evolutionary extreme learning machine (SaDE-ELM): a novel approach to blast-induced ground vibration prediction publication-title: SN Appl. Sci. – volume: 30 start-page: 3865 year: 2021 end-page: 3880 ident: bb0205 article-title: A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting publication-title: Nat. Resour. Res. – volume: 36 start-page: 724 year: 2022 end-page: 748 ident: bb0210 article-title: Optimized adaptive neuro-fuzzy inference system for predicting blast-induced ground vibration in quarries based on hunger games search optimization publication-title: Int. J. Min. Reclam. Environ. – volume: 10 start-page: 1403 issue: 4 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0340 article-title: Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris Hawks optimization algorithm publication-title: Appl. Sci. doi: 10.3390/app10041403 – volume: 33 start-page: 835 issue: 4 year: 2017 ident: 10.1016/j.coal.2023.104294_bb0100 article-title: Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms publication-title: Eng. Comput. doi: 10.1007/s00366-017-0501-6 – volume: 33 start-page: 307 issue: 2 year: 2017 ident: 10.1016/j.coal.2023.104294_bb0135 article-title: Forecasting blast-induced ground vibration developing a CART model publication-title: Eng. Comput. doi: 10.1007/s00366-016-0475-9 – volume: 29 start-page: 739 issue: 2 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0320 article-title: Intelligent Prediction of Blasting-Induced Ground Vibration using ANFIS Optimized by GA and PSO publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09515-3 – volume: 7 start-page: 5383 issue: 12 year: 2014 ident: 10.1016/j.coal.2023.104294_bb0035 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab. J. Geosci. doi: 10.1007/s12517-013-1174-0 – volume: 8 start-page: 9805 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0335 article-title: Mitigating mismatch power loss of series–parallel and total-cross-tied array configurations using novel enhanced heterogeneous hunger games search optimizer publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.07.153 – volume: 14 start-page: 1482 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0015 article-title: A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.07.031 – volume: 31 start-page: 265 issue: 2 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0180 article-title: Blast-induced ground vibration prediction in granite quarries: an application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.01.007 – volume: 77 start-page: 97 year: 2015 ident: 10.1016/j.coal.2023.104294_bb0270 article-title: Differential evolution algorithm for predicting blast induced ground vibrations publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2015.03.020 – volume: 29 start-page: 807 issue: 2 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0325 article-title: Prediction of vibration velocity generated in mine blasting using support vector regression improved by optimization algorithms publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09597-z – volume: 29 start-page: 771 issue: 2 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0065 article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09573-7 – volume: 12 start-page: 609 issue: 1 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0145 article-title: Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO) publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2020.07.009 – volume: 38 start-page: 3335 issue: 4 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0005 article-title: Automated intelligent hybrid computing schemes to predict blasting induced ground vibration publication-title: Eng. Comput. doi: 10.1007/s00366-021-01444-1 – volume: 67 start-page: 477 issue: 2 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0225 article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study publication-title: Acta Geophys. doi: 10.1007/s11600-019-00268-4 – volume: 76 start-page: 527 issue: 15 year: 2017 ident: 10.1016/j.coal.2023.104294_bb0275 article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6864-6 – volume: 33 start-page: 689 issue: 3 year: 2017 ident: 10.1016/j.coal.2023.104294_bb0295 article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration publication-title: Eng. Comput. doi: 10.1007/s00366-016-0497-3 – volume: 235 start-page: 280 issue: 1 year: 2023 ident: 10.1016/j.coal.2023.104294_bb0350 article-title: Model averaging prediction by K-fold cross-validation publication-title: J. Econ. doi: 10.1016/j.jeconom.2022.04.007 – volume: 11 start-page: 202 issue: 1 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0020 article-title: Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2018.07.004 – volume: 37 start-page: 3221 issue: 4 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0160 article-title: A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine publication-title: Eng. Comput. doi: 10.1007/s00366-020-00997-x – volume: 30 start-page: 4719 issue: 6 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0075 article-title: Predicting blast-induced ground vibration in quarries using adaptive fuzzy inference neural network and Moth–Flame optimization publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09968-5 – volume: 20 start-page: 132 issue: 1 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0215 article-title: Predicting Blast-Induced Ground Vibration in Open-pit Mines using Vibration Sensors and support Vector Regression-based Optimization Algorithms publication-title: Sensors doi: 10.3390/s20010132 – volume: 69 start-page: 161 issue: 1 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0185 article-title: Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame optimized ANN, and gene expression programming publication-title: Acta Geophys. doi: 10.1007/s11600-020-00532-y – volume: 38 start-page: 4145 issue: 5 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0260 article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration publication-title: Eng. Comput. doi: 10.1007/s00366-021-01393-9 – volume: 117 start-page: 116 issue: 3 year: 2008 ident: 10.1016/j.coal.2023.104294_bb0290 article-title: Study into blast vibration and frequency using ANFIS and MVRA publication-title: Min. Technol. doi: 10.1179/037178409X405741 – volume: 27 start-page: 225 issue: 3 year: 2011 ident: 10.1016/j.coal.2023.104294_bb0300 article-title: Intelligent systems for ground vibration measurement: a comparative study publication-title: Eng. Comput. doi: 10.1007/s00366-010-0193-7 – volume: 30 start-page: 3853 issue: 5 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0165 article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09890-w – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0060 article-title: A novel Hybrid Model for predicting Blast-induced Ground Vibration based on k-nearest neighbors and particle Swarm optimization publication-title: Sci. Rep. doi: 10.1038/s41598-019-50262-5 – volume: 74 start-page: 873 issue: 3 year: 2015 ident: 10.1016/j.coal.2023.104294_bb0125 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-014-0657-x – volume: 177 start-page: 114864 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0330 article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114864 – volume: 29 start-page: 751 issue: 2 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0090 article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09548-8 – volume: 36 start-page: 724 issue: 10 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0210 article-title: Optimized adaptive neuro-fuzzy inference system for predicting blast-induced ground vibration in quarries based on hunger games search optimization publication-title: Int. J. Min. Reclam. Environ. doi: 10.1080/17480930.2022.2131137 – volume: 87 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0360 article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 145 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0375 article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2021.104856 – volume: 30 start-page: 3865 issue: 5 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0205 article-title: A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09903-8 – volume: 6 start-page: 72 issue: 1 year: 2005 ident: 10.1016/j.coal.2023.104294_bb0310 article-title: Improving recognition and generalization capability of back-propagation NN using a self-organized network inspired by immune algorithm (SONIA) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2004.10.008 – volume: 38 start-page: 1905 issue: 2 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0345 article-title: A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration publication-title: Eng. Comput. doi: 10.1007/s00366-020-01136-2 – volume: 29 start-page: 723 issue: 2 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0280 article-title: A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09503-7 – volume: 29 start-page: 457 issue: 9 year: 2018 ident: 10.1016/j.coal.2023.104294_bb0040 article-title: Feasibility of ICA in approximating ground vibration resulting from mine blasting publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-016-2577-0 – volume: 30 start-page: 2663 issue: 3 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0070 article-title: Predicting ground vibrations due to mine blasting using a novel artificial neural network-based cuckoo search optimization publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09823-7 – volume: 10 start-page: 434 issue: 2 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0190 article-title: Developing a new computational intelligence approach for approximating the blast-induced ground vibration publication-title: Appl. Sci. doi: 10.3390/app10020434 – volume: 30 start-page: 1849 issue: 2 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0110 article-title: Prediction of blast-induced ground vibration in a mine using relevance vector regression optimized by metaheuristic algorithms publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09764-7 – volume: 38 start-page: 4007 issue: 5 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0245 article-title: Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS–PSO–MLP model publication-title: Eng. Comput. doi: 10.1007/s00366-021-01332-8 – volume: 22 start-page: 3986 issue: 19 year: 2016 ident: 10.1016/j.coal.2023.104294_bb0365 article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining publication-title: J. Vib. Control. doi: 10.1177/1077546314568172 – volume: 207 start-page: 305 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0105 article-title: A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm publication-title: Sol. Energy doi: 10.1016/j.solener.2020.06.108 – volume: 147 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0055 article-title: Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network publication-title: Measurement doi: 10.1016/j.measurement.2019.106874 – volume: 119 start-page: 118 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0150 article-title: Prediction of blast-induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2019.01.011 – volume: 56 start-page: 97 year: 2008 ident: 10.1016/j.coal.2023.104294_bb0155 article-title: Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system publication-title: Environ. Geol. doi: 10.1007/s00254-007-1143-6 – volume: 157 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0010 article-title: Aquila Optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 47 start-page: 509 issue: 3 year: 2010 ident: 10.1016/j.coal.2023.104294_bb0170 article-title: Evaluation and prediction of blast-induced ground vibration using support vector machine publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2010.01.007 – volume: 32 start-page: 14681 issue: 18 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0030 article-title: Predicting ground vibration induced by rock blasting using a novel hybrid of neural network and itemset mining publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-04822-w – volume: 14 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0255 article-title: A hybrid chaotic-based discrete wavelet transform and Aquila optimisation tuned-artificial neural network approach for wind speed prediction publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100399 – volume: 139 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0370 article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2020.106390 – volume: 75 start-page: 1137 issue: 15 year: 2016 ident: 10.1016/j.coal.2023.104294_bb0120 article-title: Estimation of ground vibration produced by blasting operations through intelligent and empirical models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5961-2 – volume: 15 start-page: 551 issue: 3 year: 2018 ident: 10.1016/j.coal.2023.104294_bb0140 article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-017-1395-y – volume: 29 start-page: 711 issue: 2 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0355 article-title: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09492-7 – volume: 32 start-page: 1586 issue: 8 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0315 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – volume: 30 start-page: 4695 issue: 6 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0240 article-title: Predicting blast-induced ground vibration in open-pit mines using different nature-inspired optimization algorithms and deep neural network publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09896-4 – volume: 30 start-page: 1233 issue: 11 year: 2010 ident: 10.1016/j.coal.2023.104294_bb0195 article-title: Predicting blast-induced ground vibration using various types of neural networks publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2010.05.005 – volume: 32 start-page: 631 issue: 4 year: 2016 ident: 10.1016/j.coal.2023.104294_bb0025 article-title: A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure publication-title: Eng. Comput. doi: 10.1007/s00366-016-0442-5 – volume: 37 start-page: 2273 issue: 3 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0095 article-title: Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with firefly algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-020-00937-9 – volume: 52 start-page: 163 year: 2012 ident: 10.1016/j.coal.2023.104294_bb0115 article-title: Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2012.03.011 – volume: 47 start-page: 8943 issue: 14 year: 2022 ident: 10.1016/j.coal.2023.104294_bb0305 article-title: An optimal configuration for hybrid SOFC, gas turbine, and Proton Exchange Membrane Electrolyzer using a developed Aquila Optimizer publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.12.222 – volume: 34 start-page: 357 issue: 2 year: 2018 ident: 10.1016/j.coal.2023.104294_bb0285 article-title: Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering publication-title: Eng. Comput. doi: 10.1007/s00366-017-0546-6 – volume: 46 start-page: 1214 issue: 7 year: 2009 ident: 10.1016/j.coal.2023.104294_bb0175 article-title: Prediction of blast-induced ground vibration using artificial neural network publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2009.03.004 – volume: 77 start-page: 376 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0220 article-title: A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.01.042 – volume: 29 start-page: 691 issue: 2 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0235 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09470-z – volume: 32 start-page: 717 issue: 4 year: 2016 ident: 10.1016/j.coal.2023.104294_bb0200 article-title: Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques publication-title: Eng. Comput. doi: 10.1007/s00366-016-0448-z – year: 2018 ident: 10.1016/j.coal.2023.104294_bb0265 – volume: 213 year: 2023 ident: 10.1016/j.coal.2023.104294_bb0080 article-title: Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118999 – volume: 231 year: 2023 ident: 10.1016/j.coal.2023.104294_bb0250 article-title: Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.109032 – volume: 108 year: 2021 ident: 10.1016/j.coal.2023.104294_bb0380 article-title: A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107434 – start-page: 1 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0045 article-title: Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction publication-title: Int. J. Min. Reclam. Environ. – volume: 2 start-page: 1845 issue: 11 year: 2020 ident: 10.1016/j.coal.2023.104294_bb0050 article-title: A Self-adaptive differential evolutionary extreme learning machine (SaDE-ELM): a novel approach to blast-induced ground vibration prediction publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03611-3 – volume: 25 start-page: 1011 issue: 6 year: 2015 ident: 10.1016/j.coal.2023.104294_bb0085 article-title: Prediction of blast-induced ground vibrations via genetic programming publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2015.09.020 – volume: 75 start-page: 289 year: 2015 ident: 10.1016/j.coal.2023.104294_bb0130 article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2015.07.019 – volume: 78 start-page: 479 issue: 15 year: 2019 ident: 10.1016/j.coal.2023.104294_bb0230 article-title: Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8491-x |
| SSID | ssj0017045 |
| Score | 2.4686217 |
| Snippet | The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104294 |
| SubjectTerms | Applied soft computing Blast-induced ground vibration Metaheuristic optimization algorithm Open-pit coal mine Peak particle velocity Self-organizing neural network |
| Title | Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks |
| URI | https://dx.doi.org/10.1016/j.coal.2023.104294 |
| Volume | 275 |
| WOSCitedRecordID | wos001029045400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0166-5162 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017045 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDt8hV4jzNbbUqWhCqOCyotyh2km6XJqnatCz8Hv4Df4-Z2EnTalmxB1QpjZLYtTpfPOPxzDeEvHVFFAmVS-YFQco8KQSLVCRYBqYBEnirqMl6__opnEyi6VR8Hgx-t7kw20VYltHVlVj-V1HDNRA2ps7eQtxdp3ABzkHocASxw_GfBD8uL5BDo0kyx12YLtRNgqFcM1iDb3DPH9M5ytTa4nK5DXjEUlpsOa-tAoPh0VlwqssUos_he7IqGCq9FJ6r54VJ4LSSxaxazeuLouGKMLcya50tcqZrRv3E9kicCXAoddj5um8U73sle1wWqoLvWbbn-Z_MNj_0VHlWJUbtNukYTVjCdJOUbJIUO-f5sqloAPP9N_MeGBcHd7tw2M7rGQTMd_anbR76vYnXQcXqXasTtHvicoRjHmH3o93D-wTcB4qxC1dsI-EuY-wjxj5i3ccdcgTjENGQHJ18GE8_dhtYoe3p6FkzcpOvpUMLD0dyvU3Us3POH5IHZoFCTzSwHpFBVj4m93u0lU_Irw5itAcxWuV0D2JUQ4x2EKPzkrYQow3E3tEOYLQHMNoHGN0BjNZVeyujBwCjGmC0BdhT8uX9-Pz0jJlqHyxxuVszUJ1O4nsC6Z1sx85tCdpIcTCRuZ24bq6UkDJ0pB9lkjtOoNIsdTms9lM7de1cuM_IsKzK7Dmh3EucPJSc567n5SqRSIkqU5tL-KQ8PCZO-3_HylDhY0WWRfx3SR8Tq2uz1EQwNz7tt2KMjSmrTdQYUHlDuxe3-pWX5N7udXlFhvVqk70md9W2nq9Xbwwk_wCPFchY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+predictions+of+blast-induced+ground+vibration+in+open-pit+mines%3A+Comparing+swarm-based+optimization+algorithms+to+optimize+self-organizing+neural+networks&rft.jtitle=International+journal+of+coal+geology&rft.au=Nguyen%2C+Hoang&rft.au=Bui%2C+Xuan-Nam&rft.au=Topal%2C+Erkan&rft.date=2023-07-01&rft.issn=0166-5162&rft.volume=275&rft.spage=104294&rft_id=info:doi/10.1016%2Fj.coal.2023.104294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coal_2023_104294 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-5162&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-5162&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-5162&client=summon |