Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks

The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing neural networks (SONIA) and metaheuristic algorithms. In order to improve the accuracy of the SONIA model, several metaheuristic algorithms w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of coal geology Ročník 275; s. 104294
Hlavní autoři: Nguyen, Hoang, Bui, Xuan-Nam, Topal, Erkan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:0166-5162
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing neural networks (SONIA) and metaheuristic algorithms. In order to improve the accuracy of the SONIA model, several metaheuristic algorithms were employed, including the Manta Ray Foraging Optimization (MRFO), Hunger Games Search (HGS), Aquila Optimization (AO), and Naked Mole-Rat Algorithm (NMRA). Additionally, the k-fold cross-validation technique was used to identify the best parameters for the algorithms, which were then used to retrain the models for predicting blast-induced ground vibration. The effectiveness of the proposed method was evaluated using a case study of an open-pit coal mine in Vietnam, which had 288 blasting events. The study found that SONIA was a suitable neural network for predicting blast-induced ground vibration due to its self-organizing structure, even with a small dataset containing complex relationships. However, the SONIA model could be further optimized using the metaheuristic algorithms to improve its accuracy. The study found that the MRFO-SONIA model was the most reliable and accurate, with the lowest error (MAE = 0.379, RMSE = 0.453, MAPE = 0.08) and the highest reliability (R2 = 0.896). Meanwhile, the HGS-SONIA, AO-SONIA, and NMRA-SONIA models provided lower performance, with MAE values of 0.455, 0.500, and 0.492, RMSE values of 0.552, 0.603, and 0.580, MAPE values of 0.100, 0.112, and 0.111, and R2 values of 0.845, 0.815, and 0.829, respectively. The results of this study demonstrated the potential of using metaheuristic-based SONIA models to enhance predictions of blast-induced ground vibration in open-pit mines. This approach could prove useful in other operations in open-pit mines where there is a need to predict vibrations or other disturbances/negative effects resulting from specific mining activities. •Self-organizing neural network is applied to predict PPV at open-pit coal mine.•Advanced metaheuristic algorithms are applied to optimize the predictive model.•Advanced techniques in data mining are applied to evaluate the models.•The MRFO-SONIA model is proposed as the best model for predicting PPV.
AbstractList The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing neural networks (SONIA) and metaheuristic algorithms. In order to improve the accuracy of the SONIA model, several metaheuristic algorithms were employed, including the Manta Ray Foraging Optimization (MRFO), Hunger Games Search (HGS), Aquila Optimization (AO), and Naked Mole-Rat Algorithm (NMRA). Additionally, the k-fold cross-validation technique was used to identify the best parameters for the algorithms, which were then used to retrain the models for predicting blast-induced ground vibration. The effectiveness of the proposed method was evaluated using a case study of an open-pit coal mine in Vietnam, which had 288 blasting events. The study found that SONIA was a suitable neural network for predicting blast-induced ground vibration due to its self-organizing structure, even with a small dataset containing complex relationships. However, the SONIA model could be further optimized using the metaheuristic algorithms to improve its accuracy. The study found that the MRFO-SONIA model was the most reliable and accurate, with the lowest error (MAE = 0.379, RMSE = 0.453, MAPE = 0.08) and the highest reliability (R2 = 0.896). Meanwhile, the HGS-SONIA, AO-SONIA, and NMRA-SONIA models provided lower performance, with MAE values of 0.455, 0.500, and 0.492, RMSE values of 0.552, 0.603, and 0.580, MAPE values of 0.100, 0.112, and 0.111, and R2 values of 0.845, 0.815, and 0.829, respectively. The results of this study demonstrated the potential of using metaheuristic-based SONIA models to enhance predictions of blast-induced ground vibration in open-pit mines. This approach could prove useful in other operations in open-pit mines where there is a need to predict vibrations or other disturbances/negative effects resulting from specific mining activities. •Self-organizing neural network is applied to predict PPV at open-pit coal mine.•Advanced metaheuristic algorithms are applied to optimize the predictive model.•Advanced techniques in data mining are applied to evaluate the models.•The MRFO-SONIA model is proposed as the best model for predicting PPV.
ArticleNumber 104294
Author Bui, Xuan-Nam
Topal, Erkan
Nguyen, Hoang
Author_xml – sequence: 1
  givenname: Hoang
  surname: Nguyen
  fullname: Nguyen, Hoang
  email: nguyenhoang@humg.edu.vn
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Ward, Bac Tu Liem Distr., Hanoi 100000, Viet Nam
– sequence: 2
  givenname: Xuan-Nam
  surname: Bui
  fullname: Bui, Xuan-Nam
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Ward, Bac Tu Liem Distr., Hanoi 100000, Viet Nam
– sequence: 3
  givenname: Erkan
  surname: Topal
  fullname: Topal, Erkan
  organization: Mining Engineering Metallurgical Engineering Department, Western Australian School of Mines (WASM), Curtin University, Western Australia, Australia
BookMark eNp9kLtOxDAQRV2AxC7wA1T-gSxj50UQDVrxklaigdpybCc7S2JHthcE38OHkhBoKKhGmjtnpHuW5MA6awg5Y7BiwIrz3Uo52a048HRcZLzKDshiDIokZwU_IssQdgCshCxfkM8bu5VWoW3p4I1GFdHZQF1D606GmKDVe2U0bb3bW01fsfZyOqFoqRuMTQaMtEdrwiVdu36QfnoV3qTvk1qGkXRDxB4_Zkp2rfMYt32g0f1GhgbTNYnzrbT4MfHW7L3sxhHfnH8JJ-SwkV0wpz_zmDzf3jyt75PN493D-nqTyJSnMeGsYjLPqhLyHBg0UEMJikORc5Bp2ihV1XXJ6vzC1JyxQmmjU86KTINOoanSY8Lnv8q7ELxpxOCxl_5dMBCTW7ETk1sxuRWz2xG6-AMpjN9to5fY_Y9ezagZS72i8SIoNHb0jd6oKLTD__AvgXidsg
CitedBy_id crossref_primary_10_1016_j_jrmge_2024_09_002
crossref_primary_10_1016_j_dt_2025_06_019
crossref_primary_10_1007_s11053_025_10518_6
crossref_primary_10_26599_Jic_2025_9180087
crossref_primary_10_3390_app14093759
crossref_primary_10_1080_17480930_2025_2552707
crossref_primary_10_1007_s11053_024_10443_0
crossref_primary_10_3390_geosciences15050182
crossref_primary_10_1038_s41598_024_81218_z
crossref_primary_10_1007_s11053_024_10329_1
crossref_primary_10_1007_s11053_025_10546_2
crossref_primary_10_1016_j_eswa_2025_127654
crossref_primary_10_1007_s00603_024_03801_0
crossref_primary_10_3390_eng6080169
crossref_primary_10_1080_15376494_2025_2496758
Cites_doi 10.3390/app10041403
10.1007/s00366-017-0501-6
10.1007/s00366-016-0475-9
10.1007/s11053-019-09515-3
10.1007/s12517-013-1174-0
10.1016/j.egyr.2022.07.153
10.1016/j.jmrt.2021.07.031
10.1016/j.ijmst.2021.01.007
10.1016/j.ijrmms.2015.03.020
10.1007/s11053-019-09597-z
10.1007/s11053-019-09573-7
10.1016/j.asej.2020.07.009
10.1007/s00366-021-01444-1
10.1007/s11600-019-00268-4
10.1007/s12665-017-6864-6
10.1007/s00366-016-0497-3
10.1016/j.jeconom.2022.04.007
10.1016/j.jrmge.2018.07.004
10.1007/s00366-020-00997-x
10.1007/s11053-021-09968-5
10.3390/s20010132
10.1007/s11600-020-00532-y
10.1007/s00366-021-01393-9
10.1179/037178409X405741
10.1007/s00366-010-0193-7
10.1007/s11053-021-09890-w
10.1038/s41598-019-50262-5
10.1007/s10064-014-0657-x
10.1016/j.eswa.2021.114864
10.1007/s11053-019-09548-8
10.1080/17480930.2022.2131137
10.1016/j.engappai.2019.103300
10.1016/j.ijrmms.2021.104856
10.1007/s11053-021-09903-8
10.1016/j.asoc.2004.10.008
10.1007/s00366-020-01136-2
10.1007/s11053-019-09503-7
10.1007/s00521-016-2577-0
10.1007/s11053-021-09823-7
10.3390/app10020434
10.1007/s11053-020-09764-7
10.1007/s00366-021-01332-8
10.1177/1077546314568172
10.1016/j.solener.2020.06.108
10.1016/j.measurement.2019.106874
10.1016/j.soildyn.2019.01.011
10.1007/s00254-007-1143-6
10.1016/j.cie.2021.107250
10.1016/j.ijrmms.2010.01.007
10.1007/s00521-020-04822-w
10.1016/j.rineng.2022.100399
10.1016/j.soildyn.2020.106390
10.1007/s12665-016-5961-2
10.1007/s13762-017-1395-y
10.1007/s11053-019-09492-7
10.1109/TKDE.2019.2912815
10.1007/s11053-021-09896-4
10.1016/j.soildyn.2010.05.005
10.1007/s00366-016-0442-5
10.1007/s00366-020-00937-9
10.1016/j.ijrmms.2012.03.011
10.1016/j.ijhydene.2021.12.222
10.1007/s00366-017-0546-6
10.1016/j.ijrmms.2009.03.004
10.1016/j.asoc.2019.01.042
10.1007/s11053-019-09470-z
10.1007/s00366-016-0448-z
10.1016/j.eswa.2022.118999
10.1016/j.ress.2022.109032
10.1016/j.asoc.2021.107434
10.1007/s42452-020-03611-3
10.1016/j.ijmst.2015.09.020
10.1016/j.measurement.2015.07.019
10.1007/s12665-019-8491-x
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.coal.2023.104294
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_coal_2023_104294
S016651622300112X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSR
SSZ
T5K
TN5
~02
~G-
29J
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SAC
SEP
SEW
UHS
VH1
WUQ
XPP
ZMT
ZY4
~HD
ID FETCH-LOGICAL-a323t-2191a5497055010f0b070c206520a33fcc9bb71b58eb2116cded32164d0d30f93
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029045400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-5162
IngestDate Sat Nov 29 07:22:59 EST 2025
Tue Nov 18 22:32:09 EST 2025
Tue Dec 03 03:44:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FFA
DE
HPSOGWO
PR
BNN
dh
UCS
ELM
QRNN
RVM
MRFO
NMRA
Peak particle velocity
BBO
MLP
CSmj
QC
ANFIS
DOE
ML
Hh
BGAMs
BCF
SpaSO
AI
MAPE
VOD
HKM
PSO
AO
FCM
GEP
RF
HGS
JA
SONIA
ν
AutoencoderNN
CART
ANN
RS
ABC
B
D
E
BI
El
H
SaDE
SRH
KNN
K
SVM
BO
HHO
SC
Q
BSVR
R
GBM
S
XGBoost
MFO
PPV
GA
Nh
Self-organizing neural network
GD
Tdl
Applied soft computing
CA
CSO
GWO
ST
f
ICA
Nblast_group
Open-pit coal mine
WOA
CL

SCA
Sd
AGPSO
CRANFIS
Blast-induced ground vibration
PE
MARS
PF
RMR
Metaheuristic optimization algorithm
HD
IM-ANN
GFNN
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a323t-2191a5497055010f0b070c206520a33fcc9bb71b58eb2116cded32164d0d30f93
ParticipantIDs crossref_primary_10_1016_j_coal_2023_104294
crossref_citationtrail_10_1016_j_coal_2023_104294
elsevier_sciencedirect_doi_10_1016_j_coal_2023_104294
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of coal geology
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dindarloo (bb0085) 2015; 25
Bui (bb0070) 2021; 30
Nguyen (bb0220) 2019; 77
Nguyen, Bui, Topal (bb0250) 2023; 231
Wang (bb0305) 2022; 47
Zhu, Nikafshan Rad, Hasanipanah (bb0380) 2021; 108
Ding (bb0090) 2020; 29
Fattahi, Hasanipanah (bb0110) 2021; 30
Nguyen (bb0215) 2019; 20
Ghasemi, Sari, Ataei (bb0115) 2012; 52
Amiri (bb0025) 2016; 32
Arthur, Temeng, Ziggah (bb0050) 2020; 2
Abualigah (bb0010) 2021; 157
Jahed Armaghani (bb0160) 2021; 37
Li (bb0190) 2020; 10
AbuShanab (bb0015) 2021; 14
Bui (bb0060) 2019; 9
Bui (bb0065) 2020; 29
Hasanipanah (bb0135) 2017; 33
Arthur, Temeng, Ziggah (bb0045) 2019
Yang (bb0325) 2020; 29
Khandelwal, Singh (bb0175) 2009; 46
Sheykhi (bb0285) 2018; 34
Amiri, Hasanipanah, Bakhshandeh Amnieh (bb0030) 2020; 32
Verma, Singh (bb0300) 2011; 27
Agrawal, Mishra (bb0020) 2019; 11
Ofori-Ntow Jnr (bb0255) 2022; 14
Khandelwal (bb0170) 2010; 47
Singh, Dontha, Bhardwaj (bb0290) 2008; 117
Ghoraba (bb0120) 2016; 75
Azimi, Khoshrou, Osanloo (bb0055) 2019; 147
Faradonbeh, Monjezi (bb0100) 2017; 33
Iphar, Yavuz, Ak (bb0155) 2008; 56
Hosseini (bb0150) 2019; 119
Zhou (bb0375) 2021; 145
Nguyen (bb0225) 2019; 67
Nguyen (bb0230) 2019; 78
Widyanto (bb0310) 2005; 6
Zhao, Zhang, Wang (bb0360) 2020; 87
Raschka (bb0265) 2018
Yu (bb0345) 2022; 38
Nguyen (bb0235) 2020; 29
Hajihassani (bb0125) 2015; 74
Yang (bb0320) 2019; 29
Armaghani (bb0040) 2018; 29
Abbaszadeh Shahri (bb0005) 2022; 38
Taheri (bb0295) 2017; 33
Zhang (bb0355) 2020; 29
Bui (bb0075) 2021; 30
Shahnazar (bb0275) 2017; 76
Yang (bb0330) 2021; 177
Yu (bb0340) 2020; 10
Armaghani (bb0035) 2014; 7
Saadat, Hasanzade, Khandelwal (bb0270) 2015; 77
Wong, Yeh (bb0315) 2019; 32
Fathy, Rezk, Yousri (bb0105) 2020; 207
Nguyen (bb0240) 2021; 30
Monjezi (bb0200) 2016; 32
Shang (bb0280) 2019; 29
Lawal, Kwon, Kim (bb0185) 2021; 69
Yousri (bb0335) 2022; 8
Ding (bb0095) 2021; 37
Nguyen, Bui (bb0210) 2022; 36
Ke (bb0165) 2021; 30
Zhang, Liu (bb0350) 2023; 235
Lawal (bb0180) 2021; 31
Monjezi (bb0195) 2010; 30
Qiu (bb0260) 2022; 38
Cao (bb0080) 2023; 213
Zhou, Shi, Li (bb0365) 2016; 22
Hasanipanah (bb0140) 2018; 15
Nguyen (bb0245) 2022; 38
Hemeida (bb0145) 2021; 12
Hasanipanah (bb0130) 2015; 75
Zhou (bb0370) 2020; 139
Nguyen, Bui (bb0205) 2021; 30
Azimi (10.1016/j.coal.2023.104294_bb0055) 2019; 147
Hasanipanah (10.1016/j.coal.2023.104294_bb0135) 2017; 33
Nguyen (10.1016/j.coal.2023.104294_bb0205) 2021; 30
Nguyen (10.1016/j.coal.2023.104294_bb0235) 2020; 29
Wang (10.1016/j.coal.2023.104294_bb0305) 2022; 47
Nguyen (10.1016/j.coal.2023.104294_bb0250) 2023; 231
Singh (10.1016/j.coal.2023.104294_bb0290) 2008; 117
Yousri (10.1016/j.coal.2023.104294_bb0335) 2022; 8
Yang (10.1016/j.coal.2023.104294_bb0320) 2019; 29
Monjezi (10.1016/j.coal.2023.104294_bb0200) 2016; 32
Faradonbeh (10.1016/j.coal.2023.104294_bb0100) 2017; 33
AbuShanab (10.1016/j.coal.2023.104294_bb0015) 2021; 14
Nguyen (10.1016/j.coal.2023.104294_bb0225) 2019; 67
Lawal (10.1016/j.coal.2023.104294_bb0180) 2021; 31
Zhou (10.1016/j.coal.2023.104294_bb0365) 2016; 22
Agrawal (10.1016/j.coal.2023.104294_bb0020) 2019; 11
Nguyen (10.1016/j.coal.2023.104294_bb0230) 2019; 78
Zhou (10.1016/j.coal.2023.104294_bb0370) 2020; 139
Zhou (10.1016/j.coal.2023.104294_bb0375) 2021; 145
Arthur (10.1016/j.coal.2023.104294_bb0045) 2019
Hajihassani (10.1016/j.coal.2023.104294_bb0125) 2015; 74
Yang (10.1016/j.coal.2023.104294_bb0325) 2020; 29
Hemeida (10.1016/j.coal.2023.104294_bb0145) 2021; 12
Ghasemi (10.1016/j.coal.2023.104294_bb0115) 2012; 52
Widyanto (10.1016/j.coal.2023.104294_bb0310) 2005; 6
Arthur (10.1016/j.coal.2023.104294_bb0050) 2020; 2
Bui (10.1016/j.coal.2023.104294_bb0075) 2021; 30
Zhao (10.1016/j.coal.2023.104294_bb0360) 2020; 87
Taheri (10.1016/j.coal.2023.104294_bb0295) 2017; 33
Sheykhi (10.1016/j.coal.2023.104294_bb0285) 2018; 34
Ding (10.1016/j.coal.2023.104294_bb0090) 2020; 29
Iphar (10.1016/j.coal.2023.104294_bb0155) 2008; 56
Bui (10.1016/j.coal.2023.104294_bb0060) 2019; 9
Shang (10.1016/j.coal.2023.104294_bb0280) 2019; 29
Ding (10.1016/j.coal.2023.104294_bb0095) 2021; 37
Amiri (10.1016/j.coal.2023.104294_bb0030) 2020; 32
Qiu (10.1016/j.coal.2023.104294_bb0260) 2022; 38
Nguyen (10.1016/j.coal.2023.104294_bb0240) 2021; 30
Nguyen (10.1016/j.coal.2023.104294_bb0220) 2019; 77
Armaghani (10.1016/j.coal.2023.104294_bb0040) 2018; 29
Khandelwal (10.1016/j.coal.2023.104294_bb0175) 2009; 46
Hasanipanah (10.1016/j.coal.2023.104294_bb0130) 2015; 75
Armaghani (10.1016/j.coal.2023.104294_bb0035) 2014; 7
Zhu (10.1016/j.coal.2023.104294_bb0380) 2021; 108
Nguyen (10.1016/j.coal.2023.104294_bb0215) 2019; 20
Zhang (10.1016/j.coal.2023.104294_bb0350) 2023; 235
Nguyen (10.1016/j.coal.2023.104294_bb0245) 2022; 38
Abbaszadeh Shahri (10.1016/j.coal.2023.104294_bb0005) 2022; 38
Monjezi (10.1016/j.coal.2023.104294_bb0195) 2010; 30
Fattahi (10.1016/j.coal.2023.104294_bb0110) 2021; 30
Ke (10.1016/j.coal.2023.104294_bb0165) 2021; 30
Khandelwal (10.1016/j.coal.2023.104294_bb0170) 2010; 47
Nguyen (10.1016/j.coal.2023.104294_bb0210) 2022; 36
Yang (10.1016/j.coal.2023.104294_bb0330) 2021; 177
Ghoraba (10.1016/j.coal.2023.104294_bb0120) 2016; 75
Raschka (10.1016/j.coal.2023.104294_bb0265) 2018
Wong (10.1016/j.coal.2023.104294_bb0315) 2019; 32
Yu (10.1016/j.coal.2023.104294_bb0340) 2020; 10
Cao (10.1016/j.coal.2023.104294_bb0080) 2023; 213
Hosseini (10.1016/j.coal.2023.104294_bb0150) 2019; 119
Jahed Armaghani (10.1016/j.coal.2023.104294_bb0160) 2021; 37
Yu (10.1016/j.coal.2023.104294_bb0345) 2022; 38
Bui (10.1016/j.coal.2023.104294_bb0065) 2020; 29
Lawal (10.1016/j.coal.2023.104294_bb0185) 2021; 69
Li (10.1016/j.coal.2023.104294_bb0190) 2020; 10
Abualigah (10.1016/j.coal.2023.104294_bb0010) 2021; 157
Dindarloo (10.1016/j.coal.2023.104294_bb0085) 2015; 25
Zhang (10.1016/j.coal.2023.104294_bb0355) 2020; 29
Fathy (10.1016/j.coal.2023.104294_bb0105) 2020; 207
Amiri (10.1016/j.coal.2023.104294_bb0025) 2016; 32
Verma (10.1016/j.coal.2023.104294_bb0300) 2011; 27
Bui (10.1016/j.coal.2023.104294_bb0070) 2021; 30
Hasanipanah (10.1016/j.coal.2023.104294_bb0140) 2018; 15
Saadat (10.1016/j.coal.2023.104294_bb0270) 2015; 77
Shahnazar (10.1016/j.coal.2023.104294_bb0275) 2017; 76
Ofori-Ntow Jnr (10.1016/j.coal.2023.104294_bb0255) 2022; 14
References_xml – volume: 30
  start-page: 2663
  year: 2021
  end-page: 2685
  ident: bb0070
  article-title: Predicting ground vibrations due to mine blasting using a novel artificial neural network-based cuckoo search optimization
  publication-title: Nat. Resour. Res.
– volume: 12
  start-page: 609
  year: 2021
  end-page: 619
  ident: bb0145
  article-title: Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO)
  publication-title: Ain Shams Eng. J.
– volume: 69
  start-page: 161
  year: 2021
  end-page: 174
  ident: bb0185
  article-title: Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame optimized ANN, and gene expression programming
  publication-title: Acta Geophys.
– volume: 30
  start-page: 3853
  year: 2021
  end-page: 3864
  ident: bb0165
  article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model
  publication-title: Nat. Resour. Res.
– volume: 29
  start-page: 691
  year: 2020
  end-page: 709
  ident: bb0235
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat. Resour. Res.
– volume: 139
  year: 2020
  ident: bb0370
  article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 117
  start-page: 116
  year: 2008
  end-page: 121
  ident: bb0290
  article-title: Study into blast vibration and frequency using ANFIS and MVRA
  publication-title: Min. Technol.
– volume: 29
  start-page: 739
  year: 2019
  end-page: 750
  ident: bb0320
  article-title: Intelligent Prediction of Blasting-Induced Ground Vibration using ANFIS Optimized by GA and PSO
  publication-title: Nat. Resour. Res.
– volume: 33
  start-page: 689
  year: 2017
  end-page: 700
  ident: bb0295
  article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
  publication-title: Eng. Comput.
– volume: 33
  start-page: 307
  year: 2017
  end-page: 316
  ident: bb0135
  article-title: Forecasting blast-induced ground vibration developing a CART model
  publication-title: Eng. Comput.
– volume: 29
  start-page: 723
  year: 2019
  end-page: 737
  ident: bb0280
  article-title: A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network
  publication-title: Nat. Resour. Res.
– start-page: 1
  year: 2019
  end-page: 25
  ident: bb0045
  article-title: Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction
  publication-title: Int. J. Min. Reclam. Environ.
– volume: 20
  start-page: 132
  year: 2019
  ident: bb0215
  article-title: Predicting Blast-Induced Ground Vibration in Open-pit Mines using Vibration Sensors and support Vector Regression-based Optimization Algorithms
  publication-title: Sensors
– volume: 14
  start-page: 1482
  year: 2021
  end-page: 1493
  ident: bb0015
  article-title: A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials
  publication-title: J. Mater. Res. Technol.
– volume: 74
  start-page: 873
  year: 2015
  end-page: 886
  ident: bb0125
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull. Eng. Geol. Environ.
– volume: 177
  start-page: 114864
  year: 2021
  ident: bb0330
  article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 551
  year: 2018
  end-page: 560
  ident: bb0140
  article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 157
  year: 2021
  ident: bb0010
  article-title: Aquila Optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
– volume: 34
  start-page: 357
  year: 2018
  end-page: 365
  ident: bb0285
  article-title: Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering
  publication-title: Eng. Comput.
– volume: 77
  start-page: 376
  year: 2019
  end-page: 386
  ident: bb0220
  article-title: A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms
  publication-title: Appl. Soft Comput.
– volume: 108
  year: 2021
  ident: bb0380
  article-title: A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting
  publication-title: Appl. Soft Comput.
– volume: 87
  year: 2020
  ident: bb0360
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: 78
  start-page: 479
  year: 2019
  ident: bb0230
  article-title: Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam
  publication-title: Environ. Earth Sci.
– volume: 32
  start-page: 717
  year: 2016
  end-page: 728
  ident: bb0200
  article-title: Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques
  publication-title: Eng. Comput.
– volume: 37
  start-page: 3221
  year: 2021
  end-page: 3235
  ident: bb0160
  article-title: A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine
  publication-title: Eng. Comput.
– volume: 22
  start-page: 3986
  year: 2016
  end-page: 3997
  ident: bb0365
  article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining
  publication-title: J. Vib. Control.
– volume: 33
  start-page: 835
  year: 2017
  end-page: 851
  ident: bb0100
  article-title: Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms
  publication-title: Eng. Comput.
– volume: 77
  start-page: 97
  year: 2015
  end-page: 104
  ident: bb0270
  article-title: Differential evolution algorithm for predicting blast induced ground vibrations
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 56
  start-page: 97
  year: 2008
  end-page: 107
  ident: bb0155
  article-title: Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system
  publication-title: Environ. Geol.
– volume: 29
  start-page: 807
  year: 2020
  end-page: 830
  ident: bb0325
  article-title: Prediction of vibration velocity generated in mine blasting using support vector regression improved by optimization algorithms
  publication-title: Nat. Resour. Res.
– volume: 30
  start-page: 4719
  year: 2021
  end-page: 4734
  ident: bb0075
  article-title: Predicting blast-induced ground vibration in quarries using adaptive fuzzy inference neural network and Moth–Flame optimization
  publication-title: Nat. Resour. Res.
– volume: 27
  start-page: 225
  year: 2011
  end-page: 233
  ident: bb0300
  article-title: Intelligent systems for ground vibration measurement: a comparative study
  publication-title: Eng. Comput.
– volume: 67
  start-page: 477
  year: 2019
  end-page: 490
  ident: bb0225
  article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study
  publication-title: Acta Geophys.
– volume: 14
  year: 2022
  ident: bb0255
  article-title: A hybrid chaotic-based discrete wavelet transform and Aquila optimisation tuned-artificial neural network approach for wind speed prediction
  publication-title: Results Eng.
– volume: 32
  start-page: 14681
  year: 2020
  end-page: 14699
  ident: bb0030
  article-title: Predicting ground vibration induced by rock blasting using a novel hybrid of neural network and itemset mining
  publication-title: Neural Comput. & Applic.
– volume: 11
  start-page: 202
  year: 2019
  end-page: 207
  ident: bb0020
  article-title: Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 76
  start-page: 527
  year: 2017
  ident: bb0275
  article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model
  publication-title: Environ. Earth Sci.
– volume: 231
  year: 2023
  ident: bb0250
  article-title: Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 30
  start-page: 1849
  year: 2021
  end-page: 1863
  ident: bb0110
  article-title: Prediction of blast-induced ground vibration in a mine using relevance vector regression optimized by metaheuristic algorithms
  publication-title: Nat. Resour. Res.
– volume: 29
  start-page: 711
  year: 2020
  end-page: 721
  ident: bb0355
  article-title: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost
  publication-title: Nat. Resour. Res.
– volume: 32
  start-page: 631
  year: 2016
  end-page: 644
  ident: bb0025
  article-title: A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure
  publication-title: Eng. Comput.
– volume: 47
  start-page: 8943
  year: 2022
  end-page: 8955
  ident: bb0305
  article-title: An optimal configuration for hybrid SOFC, gas turbine, and Proton Exchange Membrane Electrolyzer using a developed Aquila Optimizer
  publication-title: Int. J. Hydrog. Energy
– volume: 32
  start-page: 1586
  year: 2019
  end-page: 1594
  ident: bb0315
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 29
  start-page: 751
  year: 2020
  end-page: 769
  ident: bb0090
  article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms
  publication-title: Nat. Resour. Res.
– volume: 38
  start-page: 3335
  year: 2022
  end-page: 3349
  ident: bb0005
  article-title: Automated intelligent hybrid computing schemes to predict blasting induced ground vibration
  publication-title: Eng. Comput.
– volume: 75
  start-page: 289
  year: 2015
  end-page: 297
  ident: bb0130
  article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine
  publication-title: Measurement
– volume: 10
  start-page: 434
  year: 2020
  ident: bb0190
  article-title: Developing a new computational intelligence approach for approximating the blast-induced ground vibration
  publication-title: Appl. Sci.
– volume: 30
  start-page: 1233
  year: 2010
  end-page: 1236
  ident: bb0195
  article-title: Predicting blast-induced ground vibration using various types of neural networks
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 213
  year: 2023
  ident: bb0080
  article-title: Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization
  publication-title: Expert Syst. Appl.
– volume: 75
  start-page: 1137
  year: 2016
  ident: bb0120
  article-title: Estimation of ground vibration produced by blasting operations through intelligent and empirical models
  publication-title: Environ. Earth Sci.
– volume: 46
  start-page: 1214
  year: 2009
  end-page: 1222
  ident: bb0175
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 52
  start-page: 163
  year: 2012
  end-page: 170
  ident: bb0115
  article-title: Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 38
  start-page: 1905
  year: 2022
  end-page: 1920
  ident: bb0345
  article-title: A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration
  publication-title: Eng. Comput.
– volume: 47
  start-page: 509
  year: 2010
  end-page: 516
  ident: bb0170
  article-title: Evaluation and prediction of blast-induced ground vibration using support vector machine
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 38
  start-page: 4145
  year: 2022
  end-page: 4162
  ident: bb0260
  article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
  publication-title: Eng. Comput.
– volume: 235
  start-page: 280
  year: 2023
  end-page: 301
  ident: bb0350
  article-title: Model averaging prediction by K-fold cross-validation
  publication-title: J. Econ.
– volume: 8
  start-page: 9805
  year: 2022
  end-page: 9827
  ident: bb0335
  article-title: Mitigating mismatch power loss of series–parallel and total-cross-tied array configurations using novel enhanced heterogeneous hunger games search optimizer
  publication-title: Energy Rep.
– volume: 29
  start-page: 457
  year: 2018
  end-page: 465
  ident: bb0040
  article-title: Feasibility of ICA in approximating ground vibration resulting from mine blasting
  publication-title: Neural Comput. & Applic.
– volume: 119
  start-page: 118
  year: 2019
  end-page: 129
  ident: bb0150
  article-title: Prediction of blast-induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 31
  start-page: 265
  year: 2021
  end-page: 277
  ident: bb0180
  article-title: Blast-induced ground vibration prediction in granite quarries: an application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN
  publication-title: Int. J. Min. Sci. Technol.
– volume: 29
  start-page: 771
  year: 2020
  end-page: 790
  ident: bb0065
  article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system
  publication-title: Nat. Resour. Res.
– volume: 6
  start-page: 72
  year: 2005
  end-page: 84
  ident: bb0310
  article-title: Improving recognition and generalization capability of back-propagation NN using a self-organized network inspired by immune algorithm (SONIA)
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 5383
  year: 2014
  end-page: 5396
  ident: bb0035
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab. J. Geosci.
– volume: 147
  year: 2019
  ident: bb0055
  article-title: Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network
  publication-title: Measurement
– volume: 9
  start-page: 1
  year: 2019
  end-page: 14
  ident: bb0060
  article-title: A novel Hybrid Model for predicting Blast-induced Ground Vibration based on k-nearest neighbors and particle Swarm optimization
  publication-title: Sci. Rep.
– volume: 145
  year: 2021
  ident: bb0375
  article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 37
  start-page: 2273
  year: 2021
  end-page: 2284
  ident: bb0095
  article-title: Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with firefly algorithm
  publication-title: Eng. Comput.
– volume: 30
  start-page: 4695
  year: 2021
  end-page: 4717
  ident: bb0240
  article-title: Predicting blast-induced ground vibration in open-pit mines using different nature-inspired optimization algorithms and deep neural network
  publication-title: Nat. Resour. Res.
– volume: 10
  start-page: 1403
  year: 2020
  ident: bb0340
  article-title: Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris Hawks optimization algorithm
  publication-title: Appl. Sci.
– volume: 207
  start-page: 305
  year: 2020
  end-page: 316
  ident: bb0105
  article-title: A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm
  publication-title: Sol. Energy
– volume: 38
  start-page: 4007
  year: 2022
  end-page: 4025
  ident: bb0245
  article-title: Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS–PSO–MLP model
  publication-title: Eng. Comput.
– year: 2018
  ident: bb0265
  article-title: Model evaluation, model selection, and algorithm selection in machine learning
– volume: 25
  start-page: 1011
  year: 2015
  end-page: 1015
  ident: bb0085
  article-title: Prediction of blast-induced ground vibrations via genetic programming
  publication-title: Int. J. Min. Sci. Technol.
– volume: 2
  start-page: 1845
  year: 2020
  ident: bb0050
  article-title: A Self-adaptive differential evolutionary extreme learning machine (SaDE-ELM): a novel approach to blast-induced ground vibration prediction
  publication-title: SN Appl. Sci.
– volume: 30
  start-page: 3865
  year: 2021
  end-page: 3880
  ident: bb0205
  article-title: A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting
  publication-title: Nat. Resour. Res.
– volume: 36
  start-page: 724
  year: 2022
  end-page: 748
  ident: bb0210
  article-title: Optimized adaptive neuro-fuzzy inference system for predicting blast-induced ground vibration in quarries based on hunger games search optimization
  publication-title: Int. J. Min. Reclam. Environ.
– volume: 10
  start-page: 1403
  issue: 4
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0340
  article-title: Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris Hawks optimization algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app10041403
– volume: 33
  start-page: 835
  issue: 4
  year: 2017
  ident: 10.1016/j.coal.2023.104294_bb0100
  article-title: Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0501-6
– volume: 33
  start-page: 307
  issue: 2
  year: 2017
  ident: 10.1016/j.coal.2023.104294_bb0135
  article-title: Forecasting blast-induced ground vibration developing a CART model
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0475-9
– volume: 29
  start-page: 739
  issue: 2
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0320
  article-title: Intelligent Prediction of Blasting-Induced Ground Vibration using ANFIS Optimized by GA and PSO
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09515-3
– volume: 7
  start-page: 5383
  issue: 12
  year: 2014
  ident: 10.1016/j.coal.2023.104294_bb0035
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-013-1174-0
– volume: 8
  start-page: 9805
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0335
  article-title: Mitigating mismatch power loss of series–parallel and total-cross-tied array configurations using novel enhanced heterogeneous hunger games search optimizer
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.07.153
– volume: 14
  start-page: 1482
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0015
  article-title: A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.07.031
– volume: 31
  start-page: 265
  issue: 2
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0180
  article-title: Blast-induced ground vibration prediction in granite quarries: an application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2021.01.007
– volume: 77
  start-page: 97
  year: 2015
  ident: 10.1016/j.coal.2023.104294_bb0270
  article-title: Differential evolution algorithm for predicting blast induced ground vibrations
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2015.03.020
– volume: 29
  start-page: 807
  issue: 2
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0325
  article-title: Prediction of vibration velocity generated in mine blasting using support vector regression improved by optimization algorithms
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09597-z
– volume: 29
  start-page: 771
  issue: 2
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0065
  article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09573-7
– volume: 12
  start-page: 609
  issue: 1
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0145
  article-title: Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO)
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.07.009
– volume: 38
  start-page: 3335
  issue: 4
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0005
  article-title: Automated intelligent hybrid computing schemes to predict blasting induced ground vibration
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01444-1
– volume: 67
  start-page: 477
  issue: 2
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0225
  article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-019-00268-4
– volume: 76
  start-page: 527
  issue: 15
  year: 2017
  ident: 10.1016/j.coal.2023.104294_bb0275
  article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6864-6
– volume: 33
  start-page: 689
  issue: 3
  year: 2017
  ident: 10.1016/j.coal.2023.104294_bb0295
  article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0497-3
– volume: 235
  start-page: 280
  issue: 1
  year: 2023
  ident: 10.1016/j.coal.2023.104294_bb0350
  article-title: Model averaging prediction by K-fold cross-validation
  publication-title: J. Econ.
  doi: 10.1016/j.jeconom.2022.04.007
– volume: 11
  start-page: 202
  issue: 1
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0020
  article-title: Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2018.07.004
– volume: 37
  start-page: 3221
  issue: 4
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0160
  article-title: A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-00997-x
– volume: 30
  start-page: 4719
  issue: 6
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0075
  article-title: Predicting blast-induced ground vibration in quarries using adaptive fuzzy inference neural network and Moth–Flame optimization
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09968-5
– volume: 20
  start-page: 132
  issue: 1
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0215
  article-title: Predicting Blast-Induced Ground Vibration in Open-pit Mines using Vibration Sensors and support Vector Regression-based Optimization Algorithms
  publication-title: Sensors
  doi: 10.3390/s20010132
– volume: 69
  start-page: 161
  issue: 1
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0185
  article-title: Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame optimized ANN, and gene expression programming
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-020-00532-y
– volume: 38
  start-page: 4145
  issue: 5
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0260
  article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01393-9
– volume: 117
  start-page: 116
  issue: 3
  year: 2008
  ident: 10.1016/j.coal.2023.104294_bb0290
  article-title: Study into blast vibration and frequency using ANFIS and MVRA
  publication-title: Min. Technol.
  doi: 10.1179/037178409X405741
– volume: 27
  start-page: 225
  issue: 3
  year: 2011
  ident: 10.1016/j.coal.2023.104294_bb0300
  article-title: Intelligent systems for ground vibration measurement: a comparative study
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-010-0193-7
– volume: 30
  start-page: 3853
  issue: 5
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0165
  article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09890-w
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0060
  article-title: A novel Hybrid Model for predicting Blast-induced Ground Vibration based on k-nearest neighbors and particle Swarm optimization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50262-5
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  ident: 10.1016/j.coal.2023.104294_bb0125
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-014-0657-x
– volume: 177
  start-page: 114864
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0330
  article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114864
– volume: 29
  start-page: 751
  issue: 2
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0090
  article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09548-8
– volume: 36
  start-page: 724
  issue: 10
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0210
  article-title: Optimized adaptive neuro-fuzzy inference system for predicting blast-induced ground vibration in quarries based on hunger games search optimization
  publication-title: Int. J. Min. Reclam. Environ.
  doi: 10.1080/17480930.2022.2131137
– volume: 87
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0360
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– volume: 145
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0375
  article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2021.104856
– volume: 30
  start-page: 3865
  issue: 5
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0205
  article-title: A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09903-8
– volume: 6
  start-page: 72
  issue: 1
  year: 2005
  ident: 10.1016/j.coal.2023.104294_bb0310
  article-title: Improving recognition and generalization capability of back-propagation NN using a self-organized network inspired by immune algorithm (SONIA)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2004.10.008
– volume: 38
  start-page: 1905
  issue: 2
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0345
  article-title: A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01136-2
– volume: 29
  start-page: 723
  issue: 2
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0280
  article-title: A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09503-7
– volume: 29
  start-page: 457
  issue: 9
  year: 2018
  ident: 10.1016/j.coal.2023.104294_bb0040
  article-title: Feasibility of ICA in approximating ground vibration resulting from mine blasting
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-016-2577-0
– volume: 30
  start-page: 2663
  issue: 3
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0070
  article-title: Predicting ground vibrations due to mine blasting using a novel artificial neural network-based cuckoo search optimization
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09823-7
– volume: 10
  start-page: 434
  issue: 2
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0190
  article-title: Developing a new computational intelligence approach for approximating the blast-induced ground vibration
  publication-title: Appl. Sci.
  doi: 10.3390/app10020434
– volume: 30
  start-page: 1849
  issue: 2
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0110
  article-title: Prediction of blast-induced ground vibration in a mine using relevance vector regression optimized by metaheuristic algorithms
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09764-7
– volume: 38
  start-page: 4007
  issue: 5
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0245
  article-title: Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS–PSO–MLP model
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01332-8
– volume: 22
  start-page: 3986
  issue: 19
  year: 2016
  ident: 10.1016/j.coal.2023.104294_bb0365
  article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining
  publication-title: J. Vib. Control.
  doi: 10.1177/1077546314568172
– volume: 207
  start-page: 305
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0105
  article-title: A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.06.108
– volume: 147
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0055
  article-title: Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106874
– volume: 119
  start-page: 118
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0150
  article-title: Prediction of blast-induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2019.01.011
– volume: 56
  start-page: 97
  year: 2008
  ident: 10.1016/j.coal.2023.104294_bb0155
  article-title: Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-1143-6
– volume: 157
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0010
  article-title: Aquila Optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 47
  start-page: 509
  issue: 3
  year: 2010
  ident: 10.1016/j.coal.2023.104294_bb0170
  article-title: Evaluation and prediction of blast-induced ground vibration using support vector machine
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2010.01.007
– volume: 32
  start-page: 14681
  issue: 18
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0030
  article-title: Predicting ground vibration induced by rock blasting using a novel hybrid of neural network and itemset mining
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-04822-w
– volume: 14
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0255
  article-title: A hybrid chaotic-based discrete wavelet transform and Aquila optimisation tuned-artificial neural network approach for wind speed prediction
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100399
– volume: 139
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0370
  article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106390
– volume: 75
  start-page: 1137
  issue: 15
  year: 2016
  ident: 10.1016/j.coal.2023.104294_bb0120
  article-title: Estimation of ground vibration produced by blasting operations through intelligent and empirical models
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5961-2
– volume: 15
  start-page: 551
  issue: 3
  year: 2018
  ident: 10.1016/j.coal.2023.104294_bb0140
  article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-017-1395-y
– volume: 29
  start-page: 711
  issue: 2
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0355
  article-title: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09492-7
– volume: 32
  start-page: 1586
  issue: 8
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0315
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– volume: 30
  start-page: 4695
  issue: 6
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0240
  article-title: Predicting blast-induced ground vibration in open-pit mines using different nature-inspired optimization algorithms and deep neural network
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09896-4
– volume: 30
  start-page: 1233
  issue: 11
  year: 2010
  ident: 10.1016/j.coal.2023.104294_bb0195
  article-title: Predicting blast-induced ground vibration using various types of neural networks
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2010.05.005
– volume: 32
  start-page: 631
  issue: 4
  year: 2016
  ident: 10.1016/j.coal.2023.104294_bb0025
  article-title: A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0442-5
– volume: 37
  start-page: 2273
  issue: 3
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0095
  article-title: Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with firefly algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-00937-9
– volume: 52
  start-page: 163
  year: 2012
  ident: 10.1016/j.coal.2023.104294_bb0115
  article-title: Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2012.03.011
– volume: 47
  start-page: 8943
  issue: 14
  year: 2022
  ident: 10.1016/j.coal.2023.104294_bb0305
  article-title: An optimal configuration for hybrid SOFC, gas turbine, and Proton Exchange Membrane Electrolyzer using a developed Aquila Optimizer
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.12.222
– volume: 34
  start-page: 357
  issue: 2
  year: 2018
  ident: 10.1016/j.coal.2023.104294_bb0285
  article-title: Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0546-6
– volume: 46
  start-page: 1214
  issue: 7
  year: 2009
  ident: 10.1016/j.coal.2023.104294_bb0175
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 77
  start-page: 376
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0220
  article-title: A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.01.042
– volume: 29
  start-page: 691
  issue: 2
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0235
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09470-z
– volume: 32
  start-page: 717
  issue: 4
  year: 2016
  ident: 10.1016/j.coal.2023.104294_bb0200
  article-title: Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0448-z
– year: 2018
  ident: 10.1016/j.coal.2023.104294_bb0265
– volume: 213
  year: 2023
  ident: 10.1016/j.coal.2023.104294_bb0080
  article-title: Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118999
– volume: 231
  year: 2023
  ident: 10.1016/j.coal.2023.104294_bb0250
  article-title: Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.109032
– volume: 108
  year: 2021
  ident: 10.1016/j.coal.2023.104294_bb0380
  article-title: A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107434
– start-page: 1
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0045
  article-title: Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction
  publication-title: Int. J. Min. Reclam. Environ.
– volume: 2
  start-page: 1845
  issue: 11
  year: 2020
  ident: 10.1016/j.coal.2023.104294_bb0050
  article-title: A Self-adaptive differential evolutionary extreme learning machine (SaDE-ELM): a novel approach to blast-induced ground vibration prediction
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03611-3
– volume: 25
  start-page: 1011
  issue: 6
  year: 2015
  ident: 10.1016/j.coal.2023.104294_bb0085
  article-title: Prediction of blast-induced ground vibrations via genetic programming
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2015.09.020
– volume: 75
  start-page: 289
  year: 2015
  ident: 10.1016/j.coal.2023.104294_bb0130
  article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.019
– volume: 78
  start-page: 479
  issue: 15
  year: 2019
  ident: 10.1016/j.coal.2023.104294_bb0230
  article-title: Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8491-x
SSID ssj0017045
Score 2.4686217
Snippet The objective of this paper is to present a method for predicting blast-induced ground vibration in open-pit mines that is based on the use of self-organizing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104294
SubjectTerms Applied soft computing
Blast-induced ground vibration
Metaheuristic optimization algorithm
Open-pit coal mine
Peak particle velocity
Self-organizing neural network
Title Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks
URI https://dx.doi.org/10.1016/j.coal.2023.104294
Volume 275
WOSCitedRecordID wos001029045400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-5162
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017045
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDt8hV4jzNbbUqWhCqOCyotyh2km6XJqnatCz8Hv4Df4-Z2EnTalmxB1QpjZLYtTpfPOPxzDeEvHVFFAmVS-YFQco8KQSLVCRYBqYBEnirqMl6__opnEyi6VR8Hgx-t7kw20VYltHVlVj-V1HDNRA2ps7eQtxdp3ABzkHocASxw_GfBD8uL5BDo0kyx12YLtRNgqFcM1iDb3DPH9M5ytTa4nK5DXjEUlpsOa-tAoPh0VlwqssUos_he7IqGCq9FJ6r54VJ4LSSxaxazeuLouGKMLcya50tcqZrRv3E9kicCXAoddj5um8U73sle1wWqoLvWbbn-Z_MNj_0VHlWJUbtNukYTVjCdJOUbJIUO-f5sqloAPP9N_MeGBcHd7tw2M7rGQTMd_anbR76vYnXQcXqXasTtHvicoRjHmH3o93D-wTcB4qxC1dsI-EuY-wjxj5i3ccdcgTjENGQHJ18GE8_dhtYoe3p6FkzcpOvpUMLD0dyvU3Us3POH5IHZoFCTzSwHpFBVj4m93u0lU_Irw5itAcxWuV0D2JUQ4x2EKPzkrYQow3E3tEOYLQHMNoHGN0BjNZVeyujBwCjGmC0BdhT8uX9-Pz0jJlqHyxxuVszUJ1O4nsC6Z1sx85tCdpIcTCRuZ24bq6UkDJ0pB9lkjtOoNIsdTms9lM7de1cuM_IsKzK7Dmh3EucPJSc567n5SqRSIkqU5tL-KQ8PCZO-3_HylDhY0WWRfx3SR8Tq2uz1EQwNz7tt2KMjSmrTdQYUHlDuxe3-pWX5N7udXlFhvVqk70md9W2nq9Xbwwk_wCPFchY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+predictions+of+blast-induced+ground+vibration+in+open-pit+mines%3A+Comparing+swarm-based+optimization+algorithms+to+optimize+self-organizing+neural+networks&rft.jtitle=International+journal+of+coal+geology&rft.au=Nguyen%2C+Hoang&rft.au=Bui%2C+Xuan-Nam&rft.au=Topal%2C+Erkan&rft.date=2023-07-01&rft.issn=0166-5162&rft.volume=275&rft.spage=104294&rft_id=info:doi/10.1016%2Fj.coal.2023.104294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coal_2023_104294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-5162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-5162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-5162&client=summon