Generalized Mercer Kernels and Reproducing Kernel Banach Spaces
This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implem...
Uložené v:
| Hlavní autori: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2019
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 9781470435509, 1470435500 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing
kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be
well-posed and of easy implementation. First we verify many advanced properties of the general RKBSs such as density, continuity,
separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and
universal approximation. Then, we develop a new concept of generalized Mercer kernels to construct |
|---|---|
| AbstractList | This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct $p$-norm RKBSs for $1\leq p\leq\infty$. This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First we verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, we develop a new concept of generalized Mercer kernels to construct |
| Author | Xu, Yuesheng Ye, Qi |
| Author_xml | – sequence: 1 fullname: Xu, Yuesheng – sequence: 2 fullname: Ye, Qi |
| BackLink | https://cir.nii.ac.jp/crid/1130000795945869568$$DView record in CiNii |
| BookMark | eNo1kU1PFEEQhlsEwy7ugX8wiSTGw0hV9fTXycgG0QghAeO109NTCyuzPTi9aOKvt5ddLlVJ1ZP6eN-p2E9DYiGOET4iODhd8Wo4RWrkKzHFxkCjwBjcExN0jak1Eb4WM2fsc08qBW5fTAC0qh1pfSCmBOgAJWr3pkwAp8k2ZOFQzHL-BQCEiqzUE_HpghOPoV_-46664jHyWH3nMXGfq5C66oYfx6F7ist0t6tXZyGFeF_dPobI-a04WIQ-82yXj8TPL-c_5l_ry-uLb_PPl3WQBES1ZNnKyFjOkLywHXa6bWERTKCmVdpZa6NuOcguRoLglFJEAZWFRbRtUeJIfNgODvmB_-b7oV9n_6fndhgesn_RYqOTK-z7LVtu__3Eee2fschpXV7152dzZQyQ0YU82ZJpufTlyRIRZREIjFOuUVY7pW3B3u2Wr7LfrUTwG6_8xiu_8Ur-B-eReYo |
| CitedBy_id | crossref_primary_10_1155_2023_6566375 crossref_primary_10_1007_s11425_023_2344_0 crossref_primary_10_1007_s10208_020_09472_x crossref_primary_10_1007_s10444_021_09877_4 crossref_primary_10_1007_s10472_024_09931_z crossref_primary_10_1109_LCOMM_2020_2976957 crossref_primary_10_1016_j_neunet_2024_106761 crossref_primary_10_1007_s00034_022_02175_4 crossref_primary_10_1109_TPAMI_2023_3257351 crossref_primary_10_1007_s10114_022_1397_7 crossref_primary_10_1016_j_neunet_2025_107995 |
| ContentType | eBook Book |
| Copyright | Copyright 2019 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2019 American Mathematical Society |
| DBID | RYH |
| DEWEY | 515/.732 |
| DOI | 10.1090/memo/1243 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1470450771 9781470450779 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470450779 EBC5770276 BB28189527 10_1090_memo_1243 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 3.E 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER AZZ BBABE BHYWR CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a32022-3e3b3ce18423ef8d1d6bb0fa7a24b569888c6bea3dcc20a955522a1580fc8b243 |
| ISBN | 9781470435509 1470435500 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000056767&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 04:33:26 EST 2024 Wed Dec 10 13:13:44 EST 2025 Thu Jun 26 22:25:49 EDT 2025 Thu Aug 14 15:24:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generalized Mercer Kernels Machine Learning Support Vector Machines Sparse Learning Methods Positive Definite Kernels Reproducing Kernel Banach Spaces |
| LCCN | 2019013169 |
| LCCallNum_Ident | QA353.K47 .X8 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a32022-3e3b3ce18423ef8d1d6bb0fa7a24b569888c6bea3dcc20a955522a1580fc8b243 |
| Notes | March 2019, volume 258, number 1243 (seventh of 7 numbers) Includes bibliographical references and index |
| OCLC | 1096284280 |
| PQID | EBC5770276 |
| PageCount | 134 |
| ParticipantIDs | askewsholts_vlebooks_9781470450779 proquest_ebookcentral_EBC5770276 nii_cinii_1130000795945869568 ams_ebooks_10_1090_memo_1243 |
| PublicationCentury | 2000 |
| PublicationDate | 2019. |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019. |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2019 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0002152836 ssj0008047 |
| Score | 2.818219 |
| Snippet | This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing
kernel Hilbert spaces... This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Banach spaces Functions of complex variables Geometric function theory Kernel functions Support vector machines |
| TableOfContents | Introduction
--
Reproducing Kernel Banach Spaces
--
Generalized Mercer Kernels
--
Positive Definite Kernels
--
Support Vector Machines
--
Concluding Remarks
--
Acknowledgments Cover -- Title page -- Chapter 1. Introduction -- 1.1. Machine Learning in Banach Spaces -- 1.2. Overview of Kernel-based Function Spaces -- 1.3. Main Results -- Chapter 2. Reproducing Kernel Banach Spaces -- 2.1. Reproducing Kernels and Reproducing Kernel Banach Spaces -- 2.2. Density, Continuity, and Separability -- 2.3. Implicit Representation -- 2.4. Imbedding -- 2.5. Compactness -- 2.6. Representer Theorem -- 2.7. Oracle Inequality -- 2.8. Universal Approximation -- Chapter 3. Generalized Mercer Kernels -- 3.1. Constructing Generalized Mercer Kernels -- 3.2. Constructing -norm Reproducing Kernel Banach Spaces for 1< -- < -- ∞ -- 3.3. Constructing 1-norm Reproducing Kernel Banach Spaces -- Chapter 4. Positive Definite Kernels -- 4.1. Definition of Positive Definite Kernels -- 4.2. Constructing Reproducing Kernel Banach Spaces by Eigenvalues and Eigenfunctions -- 4.3. Min Kernels -- 4.4. Gaussian Kernels -- 4.5. Power Series Kernels -- Chapter 5. Support Vector Machines -- 5.1. Background of Support Vector Machines -- 5.2. Support Vector Machines in -norm Reproducing Kernel Banach Spaces for 1< -- < -- ∞ -- 5.3. Support Vector Machines in 1-norm Reproducing Kernel Banach Spaces -- 5.4. Sparse Sampling in 1-norm Reproducing Kernel Banach Spaces -- 5.5. Support Vector Machines in Special Reproducing Kernel Banach Spaces -- Chapter 6. Concluding Remarks -- Acknowledgments -- Bibliography -- Index -- Back Cover |
| Title | Generalized Mercer Kernels and Reproducing Kernel Banach Spaces |
| URI | https://www.ams.org/memo/1243/ https://cir.nii.ac.jp/crid/1130000795945869568 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5770276 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470450779 |
| Volume | 258 |
| WOSCitedRecordID | wos0000056767&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdLtsNy2idLP4YZuxVTWbK-ToOUbIPSboNu5GYkW2GmrVPitJT-9X1PVpysPYwddhGxCH7o_Yzeh977iZCPmfN5SS2EqS6zac5zm1pvVOoYt5kFl4B5Gy6bUKenejYz3yNLRxuuE1BNo29vzdV_hRrmAGxsnf0HuPuXwgT8BtBhBNhhfOAR94-Rvr9jkK7vwIc8wXqV5cG5XzZg_Loicn8V2F0xN9DNH0xsg-1UsKmUm1LC2XXYlsFc_PbRrIWcKs7-qLezBNiY9EeWYHP805PBItnIomcb6UPKLFcUXCgRSAseb7DUYEXipb9cYMjPOoqlB4zVkwlSTBnB1IAMlISQ-OmX6befx33uC-_S1VyGPrsoraffWktfs0AZeojSDlFWYMNtR2Rk23MwAWAeVvA0aOr6kSUN7sHZCzLElpGX5IlvXpHRZvHta_JpC5WkQyWJqCSASrKFSpxPOlSSDpU35Nfn6dnR1zReWpFavIqepdxzx0sPkTPjfq6rrJLO0blVluVOSKO1LqXzlldlyag1QoALbDOh6bzUDlb5lgybRePfkYRRJ5Ux3sq5yz2XDkQwmktvc1NVmo_JHuijCMfqbdGVE9AC1VWgusbkw5aiipuL-Me1niEUUGZM9kF_BSwTxgwPN8FrNMLkQktsJR2TZK3ZTlAsGi6mkyOhFGVK7vzlFbvk-eaT3CPD1fLa75Nn5c2qbpfv48dxD-0zRBQ |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Generalized+Mercer+kernels+and+reproducing+kernel+Banach+spaces&rft.au=Xu%2C+Yuesheng&rft.au=Ye%2C+Qi&rft.date=2019-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470435509&rft_id=info:doi/10.1090%2Fmemo%2F1243&rft.externalDocID=BB28189527 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470450779.jpg |

