Generalized Mercer Kernels and Reproducing Kernel Banach Spaces

This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implem...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Xu, Yuesheng, Ye, Qi
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2019
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:9781470435509, 1470435500
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First we verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, we develop a new concept of generalized Mercer kernels to construct
Bibliografia:March 2019, volume 258, number 1243 (seventh of 7 numbers)
Includes bibliographical references and index
ISBN:9781470435509
1470435500
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1243