Geometry-oblivious FMM for compressing dense SPD matrices

We present GOFMM (geometry-oblivious FMM), a novel method that creates a hierarchical low-rank approximation, or "compression," of an arbitrary dense symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an approximate matrix-vector multiplication in N log N or eve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference for High Performance Computing, Networking, Storage and Analysis (Online) s. 1 - 14
Hlavní autori: Yu, Chenhan D., Levitt, James, Reiz, Severin, Biros, George
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 12.11.2017
Edícia:ACM Conferences
Predmet:
ISBN:9781450351140, 145035114X
ISSN:2167-4337
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present GOFMM (geometry-oblivious FMM), a novel method that creates a hierarchical low-rank approximation, or "compression," of an arbitrary dense symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an approximate matrix-vector multiplication in N log N or even N time, where N is the matrix size. Compression requires N log N storage and work. In general, our scheme belongs to the family of hierarchical matrix approximation methods. In particular, it generalizes the fast multipole method (FMM) to a purely algebraic setting by only requiring the ability to sample matrix entries. Neither geometric information (i.e., point coordinates) nor knowledge of how the matrix entries have been generated is required, thus the term "geometry-oblivious." Also, we introduce a shared-memory parallel scheme for hierarchical matrix computations that reduces synchronization barriers. We present results on the Intel Knights Landing and Haswell architectures, and on the NVIDIA Pascal architecture for a variety of matrices.
ISBN:9781450351140
145035114X
ISSN:2167-4337
DOI:10.1145/3126908.3126921