Algebras of Singular Integral Operators with Kernels Controlled by Multiple Norms
The authors study algebras of singular integral operators on \mathbb R^n and nilpotent Lie groups that arise when considering the composition of Calderón-Zygmund operators with different homogeneities, such as operators occuring in sub-elliptic problems and those arising in elliptic problems. These...
Uloženo v:
| Hlavní autoři: | , , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2018
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 9781470434380, 1470434385 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The authors study algebras of singular integral operators on \mathbb R^n and nilpotent Lie groups that arise when considering the composition of Calderón-Zygmund operators with different homogeneities, such as operators occuring in sub-elliptic problems and those arising in elliptic problems. These algebras are characterized in a number of different but equivalent ways: in terms of kernel estimates and cancellation conditions, in terms of estimates of the symbol, and in terms of decompositions into dyadic sums of dilates of bump functions. The resulting operators are pseudo-local and bounded on L^p for 1 \lt p \lt \infty . While the usual class of Calderón-Zygmund operators is invariant under a one-parameter family of dilations, the operators studied here fall outside this class, and reflect a multi-parameter structure. |
|---|---|
| Bibliografie: | November 2018, volume 256, number 1230 (sixth of 6 numbers) Includes bibliographical references (p. 139-140) and index |
| ISBN: | 9781470434380 1470434385 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1230 |

