Machine Learning K-Means Clustering Algorithm for Interpolative Separable Density Fitting to Accelerate Hybrid Functional Calculations with Numerical Atomic Orbitals

The interpolative separable density fitting (ISDF) is an efficient and accurate low-rank decomposition method to reduce the high computational cost and memory usage of the Hartree-Fock exchange (HFX) calculations with numerical atomic orbitals (NAOs). In this work, we present a machine learning K-me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Jg. 124; H. 48; S. 10066
Hauptverfasser: Qin, Xinming, Li, Jielan, Hu, Wei, Yang, Jinlong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 03.12.2020
ISSN:1520-5215, 1520-5215
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interpolative separable density fitting (ISDF) is an efficient and accurate low-rank decomposition method to reduce the high computational cost and memory usage of the Hartree-Fock exchange (HFX) calculations with numerical atomic orbitals (NAOs). In this work, we present a machine learning K-means clustering algorithm to select the interpolation points in ISDF, which offers a much cheaper alternative to the expensive QR factorization with column pivoting (QRCP) procedure. We implement this K-means-based ISDF decomposition to accelerate hybrid functional calculations with NAOs in the HONPAS package. We demonstrate that this method can yield a similar accuracy for both molecules and solids at a much lower computational cost. In particular, K-means can remarkably reduce the computational cost of selecting the interpolation points by nearly two orders of magnitude compared to QRCP, resulting in a speedup of ∼10 times for ISDF-based HFX calculations.The interpolative separable density fitting (ISDF) is an efficient and accurate low-rank decomposition method to reduce the high computational cost and memory usage of the Hartree-Fock exchange (HFX) calculations with numerical atomic orbitals (NAOs). In this work, we present a machine learning K-means clustering algorithm to select the interpolation points in ISDF, which offers a much cheaper alternative to the expensive QR factorization with column pivoting (QRCP) procedure. We implement this K-means-based ISDF decomposition to accelerate hybrid functional calculations with NAOs in the HONPAS package. We demonstrate that this method can yield a similar accuracy for both molecules and solids at a much lower computational cost. In particular, K-means can remarkably reduce the computational cost of selecting the interpolation points by nearly two orders of magnitude compared to QRCP, resulting in a speedup of ∼10 times for ISDF-based HFX calculations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-5215
1520-5215
DOI:10.1021/acs.jpca.0c06019