Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety

This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testi...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Fingscheidt, Tim, Gottschalk, Hanno, Houben, Sebastian
Médium: E-kniha
Jazyk:angličtina
Vydáno: Cham Springer Nature 2022
Springer International Publishing AG
University of Wuppertal
Vydání:1
Témata:
ISBN:3031034899, 303101233X, 9783031012334, 9783031034893, 9783031012327, 3031012321
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above.
AbstractList This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above.
Author Houben, Sebastian
Gottschalk, Hanno
Fingscheidt, Tim
Author_xml – sequence: 1
  fullname: Fingscheidt, Tim
– sequence: 2
  fullname: Gottschalk, Hanno
– sequence: 3
  fullname: Houben, Sebastian
BookMark eNpNkElPwzAQhY1YBAXEGXHJAQlxCHiJYxuJQ2nLIqH2ghA3a5I4JTSNi5224t9jSIW4zMyzv-exXg_tNLYxCJ0SfEUwFtdKyJjFmJEYE8pYnGyhHgvyV71tbwRLpFJ76GQyGN9EhDHCuaKU7KNj7z8wxlRQpbg4QGxozCIam6WDOrR2bd3MR9AU0RBaiErrov6ytXNoTThy1apqpkdot4Tam-NNP0Sv96OXwWP8PHl4GvSfY2CEyiQONctKnBOWKUiVKDjPKS1lnquMCyNSxXNmypyKIikToCAxpJCkBSV5WmYZO0Tn3cN2ZVwRlhudWTvzejIcYxziSIXkNGCXHQZ-Ztb-3dat16vadGwI7C-fJLAXHbtw9nNpfKt_sdw0bUhAj-4GAhOpmAzk7WY5LEyjF66ag_vSFipdV5nr5p8b66aaYs0x1oSmXGgumODBf_bfX1jo_iOFSDj7BiD-hWw
ContentType eBook
DBID V1H
A7I
AHRNR
DOI 10.1007/978-3-031-01233-4
DatabaseName DOAB: Directory of Open Access Books
OAPEN
OverDrive Ebooks
DatabaseTitleList



Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 303101233X
9783031012334
Edition 1
1st Edition 2022
Editor Houben, Sebastian
Gottschalk, Hanno
Fingscheidt, Tim
Editor_xml – sequence: 1
  fullname: Fingscheidt, Tim
– sequence: 2
  fullname: Gottschalk, Hanno
– sequence: 3
  fullname: Houben, Sebastian
ExternalDocumentID ODN0010067852
9783031012334
EBC7018938
oai_library_oapen_org_20_500_12657_57375
87745
Genre Electronic books
GroupedDBID 38.
A7I
AABBV
AAKKN
AALJR
AAQKC
AAZWU
ABEEZ
ABSVR
ABTHU
ACEUL
ACPMC
ACSRK
ADNVS
AEKFX
AFQJN
AGWHU
AHRNR
AIQUZ
AIYYB
ALMA_UNASSIGNED_HOLDINGS
ALNDD
BBABE
CZZ
EIXGO
IEZ
SBO
TPJZQ
V1H
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Z
Z85
Z88
ID FETCH-LOGICAL-a31284-312bbf0c13b9a697d55c22f8cc9b57e7695c3efc27d4f4a2a80a6a46d21c6fbb3
IEDL.DBID A7I
ISBN 3031034899
303101233X
9783031012334
9783031034893
9783031012327
3031012321
IngestDate Fri Jul 04 04:33:00 EDT 2025
Mon Sep 22 05:09:27 EDT 2025
Fri May 30 22:23:20 EDT 2025
Wed Dec 10 14:56:02 EST 2025
Tue Oct 07 21:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TL1-483
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a31284-312bbf0c13b9a697d55c22f8cc9b57e7695c3efc27d4f4a2a80a6a46d21c6fbb3
Notes Electronic reproduction. Dordrecht: Springer, 2022. Requires the Libby app or a modern web browser.
OCLC OCN: 1331559221
1331559221
OpenAccessLink https://library.oapen.org/handle/20.500.12657/57375
PQID EBC7018938
PageCount 427
ParticipantIDs overdrive_books_ODN0010067852
askewsholts_vlebooks_9783031012334
proquest_ebookcentral_EBC7018938
oapen_primary_oai_library_oapen_org_20_500_12657_57375
oapen_doabooks_87745
PublicationCentury 2000
PublicationDate 2022
2022-06-17
2022.
PublicationDateYYYYMMDD 2022-01-01
2022-06-17
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationYear 2022
Publisher Springer Nature
Springer International Publishing AG
University of Wuppertal
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: University of Wuppertal
SSID ssj0002729957
Score 2.3496292
Snippet This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment...
This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence.Environment...
SourceID overdrive
askewsholts
proquest
oapen
SourceType Aggregation Database
Publisher
SubjectTerms Autonomous Driving
Careers
Deep Learning
Engineering
Environment Perception
Highly Automated Driving
Nonfiction
Safety
Technology
SubjectTermsDisplay Careers.
Electronic books.
Engineering.
Nonfiction.
Technology.
Subtitle Robustness, Uncertainty Quantification, and Insights Towards Safety
Title Deep Neural Networks and Data for Automated Driving
URI https://directory.doabooks.org/handle/20.500.12854/87745
https://library.oapen.org/handle/20.500.12657/57375
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=7018938
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783031012334
http://link.overdrive.com/?titleID=10067852&websiteID=
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BiwR74VEqAhRFiKurxI7t5AjdVkVCCwe02ptlOxMJUe1Wm7S_nxknuyzi1kuieBzH-WyNZ_z4BuBTp0yhvAqCtySIqg5aBCw70XStNUgmCSYGvuU3u1jUq1XzYzrH3f-duzjfePLm00r-yDZATvq5LpgMwbALb5XVj-HYcDBqtofs1_3EiiRzsdEci08x7SVpZrXaPaiK3IuRdmcvrA6eWa52a58T_awSJBEpq6hmMPP9b1I_pJqGnoMkcT1n8JT3W7ZbUlD_6fQ0UF09f9AvvoBj5DMPL-ERrl_B7ICj8ATUHPE2Zw4Pf0O3tGm8z6mofO4Hn5PNm3--GzZk-CIlUd3ordewvLr8eXEtpkgLwiseoEgTyxC6IpYqNN40ttU6StnVMTZBW7Sm0VFhF6Vtq67y0teFN74yrSyj6UJQp3C03qzxDeRticajVmgjVgRd8I0PlCOS5amVwQw-HkDo7m_SqnDv_mmTDE4SPK7d-FFck52qMzBj8u1IxeGYHHvC040SwtPJwhGQLgHpEpAZnO1byI0Ffp8v2CHm0VrLDPJdq7lUn2lrrLv8cmGLknpF_fah334HzySfmUjzNu_haNje4Rk8iffDr377IXVeui7L6z9amuXP
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Deep+Neural+Networks+and+Data+for+Automated+Driving&rft.date=2022-01-01&rft.pub=Springer+Nature&rft.isbn=9783031012334&rft_id=info:doi/10.1007%2F978-3-031-01233-4&rft.externalDBID=A7I&rft.externalDocID=oai_library_oapen_org_20_500_12657_57375
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830310%2F9783031012334.jpg