Considering the autogenic processes of the ecosystem to analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate change

Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation responds to climate change is challenging due to the influence of autogenic processes on carbon dynamics. In this study, we investigate the t...

Full description

Saved in:
Bibliographic Details
Published in:Catena (Giessen) Vol. 236; p. 107717
Main Authors: Liu, Hanxiang, Han, Dongxue, Wang, Guoping
Format: Journal Article
Language:English
Published: 15.03.2024
Subjects:
ISSN:0341-8162
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation responds to climate change is challenging due to the influence of autogenic processes on carbon dynamics. In this study, we investigate the temporal variations of the Non-autogenic Carbon Accumulation Rate (NCAR) over approximately 1500 years in a peatland located in the Amur River Basin. To remove the effects of autogenic processes, we use conceptual models of peat development and employ plant macrofossils to identify vegetation changes, particularly the fen-bog phase transition. We apply different exponential decay models to capture autogenic processes in the fen and bog phases of the peatland. Subsequently, we analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate changes in the fen and bog phases, respectively. Our findings show that in the fen phase, higher temperature increases plant litter decomposition more than the plant net primary productivity (NPP) when water content is high, leading to lower NCAR. However, as temperature rises and water content is no longer a limiting factor, plant NPP surpasses plant litter decomposition, resulting in high NCAR. In the bog phase, we find no significant correlation between NCAR and precipitation but observe a positive relationship between NCAR and temperature. These results enhance our understanding of the connections between temperature, moisture, and peatland carbon accumulation by considering the influence of autogenic processes.
AbstractList Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation responds to climate change is challenging due to the influence of autogenic processes on carbon dynamics. In this study, we investigate the temporal variations of the Non-autogenic Carbon Accumulation Rate (NCAR) over approximately 1500 years in a peatland located in the Amur River Basin. To remove the effects of autogenic processes, we use conceptual models of peat development and employ plant macrofossils to identify vegetation changes, particularly the fen-bog phase transition. We apply different exponential decay models to capture autogenic processes in the fen and bog phases of the peatland. Subsequently, we analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate changes in the fen and bog phases, respectively. Our findings show that in the fen phase, higher temperature increases plant litter decomposition more than the plant net primary productivity (NPP) when water content is high, leading to lower NCAR. However, as temperature rises and water content is no longer a limiting factor, plant NPP surpasses plant litter decomposition, resulting in high NCAR. In the bog phase, we find no significant correlation between NCAR and precipitation but observe a positive relationship between NCAR and temperature. These results enhance our understanding of the connections between temperature, moisture, and peatland carbon accumulation by considering the influence of autogenic processes.
ArticleNumber 107717
Author Liu, Hanxiang
Han, Dongxue
Wang, Guoping
Author_xml – sequence: 1
  givenname: Hanxiang
  orcidid: 0000-0001-5603-6430
  surname: Liu
  fullname: Liu, Hanxiang
– sequence: 2
  givenname: Dongxue
  surname: Han
  fullname: Han, Dongxue
– sequence: 3
  givenname: Guoping
  orcidid: 0000-0002-8350-812X
  surname: Wang
  fullname: Wang, Guoping
BookMark eNp9UbtOAzEQdBEkEuAPKFzSJNj38F3oUMRLikQDtbVn7yWOLnawfUjHh_C9ODkqCqr1emdmdzQzMrHOIiHXnC044-J2t1AQ0cIiY1mevqqKVxMyZXnB5zUX2TmZhbBjjBVVyafke-VsMBq9sRsat0ihj26D1ih68E5hCBioa08jVC4MIeKeRkfBQjd84WkQMGlE82nicMQeEGIHVlMFvnGWglL9vu8gmtQkalI4oIfY-7QuwbaDTqs6s0-HU7UFu8FLctZCF_Dqt16Q98eHt9XzfP369LK6X88hZ1WcL3WpGWjBWp3lbdNUoml4mWkuQCNvGoRlWaAueZMxnR5C1BnWOeZctUVZ6_yC3Iy6yexHjyHKvQkKu3Q-uj7InIuyFstlXSbo3QhV3oXgsZXKxJOn6MF0kjN5DEDu5BiAPAYgxwASufhDPvjk1w__034AsrqWVA
CitedBy_id crossref_primary_10_1002_ece3_71758
crossref_primary_10_1016_j_catena_2024_108201
Cites_doi 10.1029/2012JG001978
10.1073/pnas.1118965109
10.1046/j.1461-0248.2000.00118.x
10.1016/0016-7037(75)90198-2
10.1038/s41598-020-65032-x
10.1126/science.1090553
10.1038/s41467-018-03406-6
10.1002/2015GL066824
10.1016/j.quascirev.2014.06.004
10.2307/1941811
10.1046/j.0022-0477.2001.00586.x
10.1016/j.earscirev.2013.11.003
10.1111/j.1502-3885.2009.00125.x
10.1016/j.quascirev.2013.02.023
10.1111/gcb.15005
10.1038/297300a0
10.1890/09-2267.1
10.3389/fevo.2020.00273
10.1007/s00382-019-04813-1
10.2307/1351691
10.1214/ba/1339616472
10.5194/cp-17-2633-2021
10.5194/esd-1-1-2010
10.5194/bg-10-929-2013
10.1016/j.quascirev.2012.09.018
10.1016/0098-3004(87)90022-7
10.1038/s41558-020-00944-0
10.1139/b89-435
10.1111/gcb.13950
10.1073/pnas.1717838115
10.1111/gcb.15262
10.1007/s10021-007-9107-y
10.1073/pnas.0911387107
10.3974/geodb.2016.03.11.V1
10.1038/s41558-018-0271-1
10.1111/j.1365-2486.2010.02279.x
10.1007/s10021-007-9064-5
10.1111/ecog.03031
10.1177/095968369400400209
10.1016/0169-5347(95)90007-1
10.1111/gcb.15099
10.1016/j.geoderma.2018.06.002
10.1029/2010GL043584
10.1016/S0341-8162(78)80002-2
10.1046/j.1365-2745.2003.00762.x
10.1139/b03-016
10.1038/s41598-021-88766-8
10.1029/2008GM000829
10.1175/JCLI3800.1
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.catena.2023.107717
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Sciences (General)
ExternalDocumentID 10_1016_j_catena_2023_107717
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9DU
9JM
9JN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABUFD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
~HD
7S9
L.6
ID FETCH-LOGICAL-a307t-9d5d0ad60fd23fbb76bb152d16ade1bbea954ed51b20d4ed6682e83e31cf458d3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127086900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0341-8162
IngestDate Fri Nov 14 18:41:18 EST 2025
Tue Nov 18 21:45:25 EST 2025
Sat Nov 29 07:20:46 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a307t-9d5d0ad60fd23fbb76bb152d16ade1bbea954ed51b20d4ed6682e83e31cf458d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5603-6430
0000-0002-8350-812X
PQID 3165869985
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3165869985
crossref_citationtrail_10_1016_j_catena_2023_107717
crossref_primary_10_1016_j_catena_2023_107717
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Catena (Giessen)
PublicationYear 2024
References Hastie (10.1016/j.catena.2023.107717_b0100) 1986; 1
Chambers (10.1016/j.catena.2023.107717_b0035) 2011; 7
Frolking (10.1016/j.catena.2023.107717_b0070) 2010; 1
Smith (10.1016/j.catena.2023.107717_b0210) 2004; 303
Charman (10.1016/j.catena.2023.107717_b0040) 2013; 10
Steinhilber (10.1016/j.catena.2023.107717_b0215) 2012; 109
Liu (10.1016/j.catena.2023.107717_b0145) 2019; 53
Zhang (10.1016/j.catena.2023.107717_b0255) 2020; 26
Friedlingstein (10.1016/j.catena.2023.107717_b0065) 2006; 19
Rastogi (10.1016/j.catena.2023.107717_b0200) 2020; 10
Yu (10.1016/j.catena.2023.107717_b0245) 2003; 81
van Breemen (10.1016/j.catena.2023.107717_b0230) 1995; 10
IPCC (10.1016/j.catena.2023.107717_b0125) 2014
Hughes (10.1016/j.catena.2023.107717_b0115) 2003; 91
Bunsen (10.1016/j.catena.2023.107717_b0030) 2020; 26
Page (10.1016/j.catena.2023.107717_b0195) 2011; 17
Zhao (10.1016/j.catena.2023.107717_b0260) 2014; 128
Loisel (10.1016/j.catena.2023.107717_b0150) 2021; 11
Clymo (10.1016/j.catena.2023.107717_b0050) 1984; 303
Hughes (10.1016/j.catena.2023.107717_b0110) 2000; 3
Leifeld (10.1016/j.catena.2023.107717_b0140) 2018; 9
Fordham (10.1016/j.catena.2023.107717_b0060) 2017; 40
Yu (10.1016/j.catena.2023.107717_b0250) 2010; 37
Loisel (10.1016/j.catena.2023.107717_b0155) 2020; 8
Morris (10.1016/j.catena.2023.107717_b0185) 2018; 115
Jones (10.1016/j.catena.2023.107717_b0130) 2010; 107
Wen (10.1016/j.catena.2023.107717_b0240) 2010; 39
Loisel (10.1016/j.catena.2023.107717_b0165) 2013; 118
Moore (10.1016/j.catena.2023.107717_b0180) 2007; 10
Granath (10.1016/j.catena.2023.107717_b0090) 2010; 91
Chaudhary (10.1016/j.catena.2023.107717_b0045) 2020; 26
Kubiw (10.1016/j.catena.2023.107717_b0135) 1989; 67
Craft (10.1016/j.catena.2023.107717_b0055) 1991; 14
10.1016/j.catena.2023.107717_b0105
Loisel (10.1016/j.catena.2023.107717_b0160) 2013; 69
Wang (10.1016/j.catena.2023.107717_b0235) 2014; 99
Swindles (10.1016/j.catena.2023.107717_b0225) 2018; 24
10.1016/j.catena.2023.107717_b0020
Morris (10.1016/j.catena.2023.107717_b0190) 2015; 42
Gallego-Sala (10.1016/j.catena.2023.107717_b0075) 2018; 8
Bell (10.1016/j.catena.2023.107717_b0015) 2018; 331
Mäkilä (10.1016/j.catena.2023.107717_b0175) 2001; 89
Sullivan (10.1016/j.catena.2023.107717_b0220) 2008; 11
Blaauw (10.1016/j.catena.2023.107717_b0025) 2011; 6
Barber (10.1016/j.catena.2023.107717_b0010) 1994; 4
Longman (10.1016/j.catena.2023.107717_b0170) 2021; 17
Appleby (10.1016/j.catena.2023.107717_b0005) 1978; 5
Gorham (10.1016/j.catena.2023.107717_b0080) 1991; 1
Young (10.1016/j.catena.2023.107717_bib261) 2021; 11
Robbins (10.1016/j.catena.2023.107717_b0205) 1975; 39
Gorham (10.1016/j.catena.2023.107717_b0085) 2012; 58
Ingram (10.1016/j.catena.2023.107717_b0120) 1982; 297
Grimm (10.1016/j.catena.2023.107717_b0095) 1987; 13
References_xml – volume: 7
  start-page: 1
  year: 2011
  ident: 10.1016/j.catena.2023.107717_b0035
  article-title: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics
  publication-title: Mires and Peat
– volume: 118
  start-page: 41
  year: 2013
  ident: 10.1016/j.catena.2023.107717_b0165
  article-title: Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska
  publication-title: J. Geophys. Res.-Biogeosci.
  doi: 10.1029/2012JG001978
– volume: 109
  start-page: 5967
  year: 2012
  ident: 10.1016/j.catena.2023.107717_b0215
  article-title: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1118965109
– volume: 1
  start-page: 297
  year: 1986
  ident: 10.1016/j.catena.2023.107717_b0100
  article-title: Generalized additive models
  publication-title: Stat. Sci.
– volume: 3
  start-page: 7
  year: 2000
  ident: 10.1016/j.catena.2023.107717_b0110
  article-title: A reappraisal of the mechanisms leading to ombrotrophy in British raised mires
  publication-title: Ecol. Lett.
  doi: 10.1046/j.1461-0248.2000.00118.x
– volume: 39
  start-page: 285
  year: 1975
  ident: 10.1016/j.catena.2023.107717_b0205
  article-title: Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(75)90198-2
– volume: 10
  start-page: 8592
  year: 2020
  ident: 10.1016/j.catena.2023.107717_b0200
  article-title: Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65032-x
– volume: 303
  start-page: 353
  year: 2004
  ident: 10.1016/j.catena.2023.107717_b0210
  article-title: Siberian peatlands a net carbon sink and global methane source since the early Holocene
  publication-title: Science
  doi: 10.1126/science.1090553
– volume: 9
  start-page: 1071
  year: 2018
  ident: 10.1016/j.catena.2023.107717_b0140
  article-title: The underappreciated potential of peatlands in global climate change mitigation strategies
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03406-6
– volume: 42
  start-page: 10788
  year: 2015
  ident: 10.1016/j.catena.2023.107717_b0190
  article-title: Untangling climate signals from autogenic changes in long-term peatland development
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL066824
– volume: 99
  start-page: 34
  year: 2014
  ident: 10.1016/j.catena.2023.107717_b0235
  article-title: Carbon dynamics of peatlands in China during the Holocene
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2014.06.004
– volume: 1
  start-page: 182
  year: 1991
  ident: 10.1016/j.catena.2023.107717_b0080
  article-title: Northern peatlands: role in the carbon cycle and probable responses to climatic warming
  publication-title: Ecol. Appl.
  doi: 10.2307/1941811
– volume: 89
  start-page: 589
  year: 2001
  ident: 10.1016/j.catena.2023.107717_b0175
  article-title: Aapa mires as a carbon sink and source during the Holocene
  publication-title: J. Ecol.
  doi: 10.1046/j.0022-0477.2001.00586.x
– volume: 128
  start-page: 139
  year: 2014
  ident: 10.1016/j.catena.2023.107717_b0260
  article-title: Peatland initiation and carbon accumulation in China over the last 50,000 years
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2013.11.003
– volume: 39
  start-page: 262
  year: 2010
  ident: 10.1016/j.catena.2023.107717_b0240
  article-title: Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China
  publication-title: Boreas
  doi: 10.1111/j.1502-3885.2009.00125.x
– volume: 69
  start-page: 125
  year: 2013
  ident: 10.1016/j.catena.2023.107717_b0160
  article-title: Holocene peatland carbon dynamics in Patagonia
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2013.02.023
– volume: 26
  start-page: 2435
  year: 2020
  ident: 10.1016/j.catena.2023.107717_b0255
  article-title: Decreased carbon accumulation feedback driven by climate induced drying of two southern boreal bogs over recent centuries
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15005
– volume: 297
  start-page: 300
  year: 1982
  ident: 10.1016/j.catena.2023.107717_b0120
  article-title: Size and shape in raised mire ecosystems: a geophysical model
  publication-title: Nature
  doi: 10.1038/297300a0
– volume: 91
  start-page: 3047
  year: 2010
  ident: 10.1016/j.catena.2023.107717_b0090
  article-title: Rapid ecosystem shifts in peatlands: linking plant physiology and succession
  publication-title: Ecology
  doi: 10.1890/09-2267.1
– volume: 8
  start-page: 273
  year: 2020
  ident: 10.1016/j.catena.2023.107717_b0155
  article-title: Abrupt Fen-Bog Transition Across Southern Patagonia: Timing, Causes, and Impacts on Carbon Sequestration
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2020.00273
– volume: 53
  start-page: 2161
  year: 2019
  ident: 10.1016/j.catena.2023.107717_b0145
  article-title: Temperature influence on peatland carbon accumulation over the last century in Northeast China
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-019-04813-1
– volume: 14
  start-page: 175
  year: 1991
  ident: 10.1016/j.catena.2023.107717_b0055
  article-title: Loss on ignition and kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion
  publication-title: Estuar. Coasts
  doi: 10.2307/1351691
– volume: 6
  start-page: 457
  year: 2011
  ident: 10.1016/j.catena.2023.107717_b0025
  article-title: Flexible paleoclimate age-depth models using an autoregressive gamma process
  publication-title: Bayesian Anal.
  doi: 10.1214/ba/1339616472
– volume: 17
  start-page: 2633
  year: 2021
  ident: 10.1016/j.catena.2023.107717_b0170
  article-title: Carbon accumulation rates of Holocene peatlands in central–eastern Europe document the driving role of human impact over the past 4000 years
  publication-title: Clim. Past
  doi: 10.5194/cp-17-2633-2021
– volume: 1
  start-page: 3
  year: 2010
  ident: 10.1016/j.catena.2023.107717_b0070
  article-title: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-1-1-2010
– volume: 10
  start-page: 929
  year: 2013
  ident: 10.1016/j.catena.2023.107717_b0040
  article-title: Climate-related changes in peatland carbon accumulation during the last millennium
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-929-2013
– volume: 58
  start-page: 77
  year: 2012
  ident: 10.1016/j.catena.2023.107717_b0085
  article-title: Long-term carbon sequestration in North American peatlands
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2012.09.018
– volume: 13
  start-page: 13
  year: 1987
  ident: 10.1016/j.catena.2023.107717_b0095
  article-title: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(87)90022-7
– volume: 11
  start-page: 70
  year: 2021
  ident: 10.1016/j.catena.2023.107717_b0150
  article-title: Expert assessment of future vulnerability of the global peatland carbon sink
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-020-00944-0
– volume: 67
  start-page: 3534
  year: 1989
  ident: 10.1016/j.catena.2023.107717_b0135
  article-title: The developmental history of peatlands at Muskiki and Marguerite lakes, Alberta
  publication-title: Can. J. Bot.
  doi: 10.1139/b89-435
– volume: 24
  start-page: 738
  year: 2018
  ident: 10.1016/j.catena.2023.107717_b0225
  article-title: Ecosystem state shifts during long-term development of an Amazonian peatland
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13950
– volume: 115
  start-page: 4851
  year: 2018
  ident: 10.1016/j.catena.2023.107717_b0185
  article-title: Global peatland initiation driven by regionally asynchronous warming
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1717838115
– volume: 26
  start-page: 5778
  year: 2020
  ident: 10.1016/j.catena.2023.107717_b0030
  article-title: Carbon storage dynamics in peatlands: Comparing recent- and long-term accumulation histories in southern Patagonia
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15262
– volume: 11
  start-page: 61
  year: 2008
  ident: 10.1016/j.catena.2023.107717_b0220
  article-title: Temperature and microtopography interact to control carbon cycling in a high arctic fen
  publication-title: Ecosystems
  doi: 10.1007/s10021-007-9107-y
– volume: 107
  start-page: 7347
  year: 2010
  ident: 10.1016/j.catena.2023.107717_b0130
  article-title: Rapid deglacial and early Holocene expansion of peatlands in Alaska
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0911387107
– volume: 303
  start-page: 605
  year: 1984
  ident: 10.1016/j.catena.2023.107717_b0050
  article-title: The limits to peat bog growth
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci.
– ident: 10.1016/j.catena.2023.107717_b0105
  doi: 10.3974/geodb.2016.03.11.V1
– volume: 8
  start-page: 907
  year: 2018
  ident: 10.1016/j.catena.2023.107717_b0075
  article-title: Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-018-0271-1
– volume: 17
  start-page: 798
  year: 2011
  ident: 10.1016/j.catena.2023.107717_b0195
  article-title: Global and regional importance of the tropical peatland carbon pool
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02279.x
– volume: 10
  start-page: 949
  year: 2007
  ident: 10.1016/j.catena.2023.107717_b0180
  article-title: Litter decomposition in temperate peatland ecosystems: The effect of substrate and site
  publication-title: Ecosystems
  doi: 10.1007/s10021-007-9064-5
– volume: 40
  start-page: 1348
  year: 2017
  ident: 10.1016/j.catena.2023.107717_b0060
  article-title: PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales
  publication-title: Ecography
  doi: 10.1111/ecog.03031
– volume: 4
  start-page: 198
  year: 1994
  ident: 10.1016/j.catena.2023.107717_b0010
  article-title: A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England
  publication-title: The Holocene
  doi: 10.1177/095968369400400209
– volume: 10
  start-page: 270
  year: 1995
  ident: 10.1016/j.catena.2023.107717_b0230
  article-title: How Sphagnum bogs down other plants
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/0169-5347(95)90007-1
– volume: 26
  start-page: 4119
  year: 2020
  ident: 10.1016/j.catena.2023.107717_b0045
  article-title: Modelling past and future peatland carbon dynamics across the pan-Arctic
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15099
– volume: 331
  start-page: 29
  year: 2018
  ident: 10.1016/j.catena.2023.107717_b0015
  article-title: Sensitivity of peatland litter decomposition to changes in temperature and rainfall
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.06.002
– year: 2014
  ident: 10.1016/j.catena.2023.107717_b0125
– volume: 37
  start-page: 1
  year: 2010
  ident: 10.1016/j.catena.2023.107717_b0250
  article-title: Global peatland dynamics since the Last Glacial Maximum
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL043584
– volume: 5
  start-page: 1
  year: 1978
  ident: 10.1016/j.catena.2023.107717_b0005
  article-title: The calculation of Pb dates assuming a constant rate of supply of unsupported Pb to the sediment
  publication-title: Catena
  doi: 10.1016/S0341-8162(78)80002-2
– volume: 91
  start-page: 253
  year: 2003
  ident: 10.1016/j.catena.2023.107717_b0115
  article-title: Mire development across the fen–bog transition on the Teifi floodplain at Tregaron Bog, Ceredigion, Wales, and a comparison with 13 other raised bogs
  publication-title: J. Ecol.
  doi: 10.1046/j.1365-2745.2003.00762.x
– volume: 81
  start-page: 267
  year: 2003
  ident: 10.1016/j.catena.2023.107717_b0245
  article-title: Understanding Holocene peat accumulation pattern of continental fens in western Canada
  publication-title: Can. J. Bot.
  doi: 10.1139/b03-016
– volume: 11
  start-page: 9547
  year: 2021
  ident: 10.1016/j.catena.2023.107717_bib261
  article-title: A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-88766-8
– ident: 10.1016/j.catena.2023.107717_b0020
  doi: 10.1029/2008GM000829
– volume: 19
  start-page: 3337
  year: 2006
  ident: 10.1016/j.catena.2023.107717_b0065
  article-title: Climate-Carbon cycle feedback analysis: results from the C4MIP model intercomparison
  publication-title: J. Clim.
  doi: 10.1175/JCLI3800.1
SSID ssj0004751
Score 2.430487
Snippet Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 107717
SubjectTerms carbon
carbon sinks
catenas
climate change
ecosystems
net primary productivity
peat
peatlands
phase transition
plant litter
temperature
vegetation
water content
watersheds
Title Considering the autogenic processes of the ecosystem to analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate change
URI https://www.proquest.com/docview/3165869985
Volume 236
WOSCitedRecordID wos001127086900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0341-8162
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004751
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFlQuiBYQ5SUjcQChVEmc57GqygKqKg4F7S3yKyXV4qx2k2rLD-HAr2X8yGOpBPTAJbJiZ2LtfDszGc8DoVc-SVPQZNQjJOQegMIHOZgJr-SgjGVYitQEY345SU9Ps9ks_zSZ_OxyYS7nqVLZep0v_iur4R4wW6fO3oDdPVG4AWNgOlyB7XD9J8Z3LTi7PCjaNjUsrvjbhU0KsGVmTTAHr20lZ22BUl2e5Ls0Eysd1u76SuiQaBDYc5MAR5dMhy9z3n5zfb-M8SrB-LbFmc1hxNcrAa-aV2ANS5daPDaCj-C2osZBUen9qJE74qRqjTakag3APR8EpJWOtTpft8NxknN2T1uT9jX2YISRDuGyOZxd5lYUeFmwKZVDMpar8JGa2hzPayLfeh8udMFP2PuBbgd_MCzfrLD9m-br4xG7ULeLwlIpNJXCUrmFtsM0zkFibh9-OJ59HLJuU9Pcs999l5hpogev72bT8NnU-8aYObuP7rmvEHxo0bOLJlLtoZ2pdPXL99Cdqen4DKNdJ_1X-LUrUf7mAfoxAhkGwOAeZLgHGa5LM9WDDDc1diAzEyOQ6bUdyLAFGR6DTD86AhnWy8YgwxZkD9Hnd8dnR-891-HDo6BbGi8XsfCpSPxShKRkLE0YA4NSBAkVMmBM0jyOpIgDFvoCBkmShTLTfnteRnEmyCO0pWolHyMsQRFxnyVc5iQCG5UmnCVAB_RPTqhk-4h0P3_BXfl73YVlXvyJ-fvI659a2PIvf1n_suNsAXJaH75RJet2VZAAbP0kz7P4yQ1pPkV3h3_NM7TVLFv5HN3ml021Wr5wqPwFLv6-eQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considering+the+autogenic+processes+of+the+ecosystem+to+analyze+the+sensitivity+of+peatland+carbon+accumulation+to+temperature+and+hydroclimate+change&rft.jtitle=Catena+%28Giessen%29&rft.au=Liu%2C+Hanxiang&rft.au=Han%2C+Dongxue&rft.au=Wang%2C+Guoping&rft.date=2024-03-15&rft.issn=0341-8162&rft.volume=236&rft.spage=107717&rft_id=info:doi/10.1016%2Fj.catena.2023.107717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_catena_2023_107717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon