Considering the autogenic processes of the ecosystem to analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate change
Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation responds to climate change is challenging due to the influence of autogenic processes on carbon dynamics. In this study, we investigate the t...
Uloženo v:
| Vydáno v: | Catena (Giessen) Ročník 236; s. 107717 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
15.03.2024
|
| Témata: | |
| ISSN: | 0341-8162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation responds to climate change is challenging due to the influence of autogenic processes on carbon dynamics. In this study, we investigate the temporal variations of the Non-autogenic Carbon Accumulation Rate (NCAR) over approximately 1500 years in a peatland located in the Amur River Basin. To remove the effects of autogenic processes, we use conceptual models of peat development and employ plant macrofossils to identify vegetation changes, particularly the fen-bog phase transition. We apply different exponential decay models to capture autogenic processes in the fen and bog phases of the peatland. Subsequently, we analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate changes in the fen and bog phases, respectively. Our findings show that in the fen phase, higher temperature increases plant litter decomposition more than the plant net primary productivity (NPP) when water content is high, leading to lower NCAR. However, as temperature rises and water content is no longer a limiting factor, plant NPP surpasses plant litter decomposition, resulting in high NCAR. In the bog phase, we find no significant correlation between NCAR and precipitation but observe a positive relationship between NCAR and temperature. These results enhance our understanding of the connections between temperature, moisture, and peatland carbon accumulation by considering the influence of autogenic processes. |
|---|---|
| AbstractList | Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation responds to climate change is challenging due to the influence of autogenic processes on carbon dynamics. In this study, we investigate the temporal variations of the Non-autogenic Carbon Accumulation Rate (NCAR) over approximately 1500 years in a peatland located in the Amur River Basin. To remove the effects of autogenic processes, we use conceptual models of peat development and employ plant macrofossils to identify vegetation changes, particularly the fen-bog phase transition. We apply different exponential decay models to capture autogenic processes in the fen and bog phases of the peatland. Subsequently, we analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate changes in the fen and bog phases, respectively. Our findings show that in the fen phase, higher temperature increases plant litter decomposition more than the plant net primary productivity (NPP) when water content is high, leading to lower NCAR. However, as temperature rises and water content is no longer a limiting factor, plant NPP surpasses plant litter decomposition, resulting in high NCAR. In the bog phase, we find no significant correlation between NCAR and precipitation but observe a positive relationship between NCAR and temperature. These results enhance our understanding of the connections between temperature, moisture, and peatland carbon accumulation by considering the influence of autogenic processes. |
| ArticleNumber | 107717 |
| Author | Liu, Hanxiang Han, Dongxue Wang, Guoping |
| Author_xml | – sequence: 1 givenname: Hanxiang orcidid: 0000-0001-5603-6430 surname: Liu fullname: Liu, Hanxiang – sequence: 2 givenname: Dongxue surname: Han fullname: Han, Dongxue – sequence: 3 givenname: Guoping orcidid: 0000-0002-8350-812X surname: Wang fullname: Wang, Guoping |
| BookMark | eNp9UbtOAzEQdBEkEuAPKFzSJNj38F3oUMRLikQDtbVn7yWOLnawfUjHh_C9ODkqCqr1emdmdzQzMrHOIiHXnC044-J2t1AQ0cIiY1mevqqKVxMyZXnB5zUX2TmZhbBjjBVVyafke-VsMBq9sRsat0ihj26D1ih68E5hCBioa08jVC4MIeKeRkfBQjd84WkQMGlE82nicMQeEGIHVlMFvnGWglL9vu8gmtQkalI4oIfY-7QuwbaDTqs6s0-HU7UFu8FLctZCF_Dqt16Q98eHt9XzfP369LK6X88hZ1WcL3WpGWjBWp3lbdNUoml4mWkuQCNvGoRlWaAueZMxnR5C1BnWOeZctUVZ6_yC3Iy6yexHjyHKvQkKu3Q-uj7InIuyFstlXSbo3QhV3oXgsZXKxJOn6MF0kjN5DEDu5BiAPAYgxwASufhDPvjk1w__034AsrqWVA |
| CitedBy_id | crossref_primary_10_1002_ece3_71758 crossref_primary_10_1016_j_catena_2024_108201 |
| Cites_doi | 10.1029/2012JG001978 10.1073/pnas.1118965109 10.1046/j.1461-0248.2000.00118.x 10.1016/0016-7037(75)90198-2 10.1038/s41598-020-65032-x 10.1126/science.1090553 10.1038/s41467-018-03406-6 10.1002/2015GL066824 10.1016/j.quascirev.2014.06.004 10.2307/1941811 10.1046/j.0022-0477.2001.00586.x 10.1016/j.earscirev.2013.11.003 10.1111/j.1502-3885.2009.00125.x 10.1016/j.quascirev.2013.02.023 10.1111/gcb.15005 10.1038/297300a0 10.1890/09-2267.1 10.3389/fevo.2020.00273 10.1007/s00382-019-04813-1 10.2307/1351691 10.1214/ba/1339616472 10.5194/cp-17-2633-2021 10.5194/esd-1-1-2010 10.5194/bg-10-929-2013 10.1016/j.quascirev.2012.09.018 10.1016/0098-3004(87)90022-7 10.1038/s41558-020-00944-0 10.1139/b89-435 10.1111/gcb.13950 10.1073/pnas.1717838115 10.1111/gcb.15262 10.1007/s10021-007-9107-y 10.1073/pnas.0911387107 10.3974/geodb.2016.03.11.V1 10.1038/s41558-018-0271-1 10.1111/j.1365-2486.2010.02279.x 10.1007/s10021-007-9064-5 10.1111/ecog.03031 10.1177/095968369400400209 10.1016/0169-5347(95)90007-1 10.1111/gcb.15099 10.1016/j.geoderma.2018.06.002 10.1029/2010GL043584 10.1016/S0341-8162(78)80002-2 10.1046/j.1365-2745.2003.00762.x 10.1139/b03-016 10.1038/s41598-021-88766-8 10.1029/2008GM000829 10.1175/JCLI3800.1 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.catena.2023.107717 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Sciences (General) |
| ExternalDocumentID | 10_1016_j_catena_2023_107717 |
| GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9DU 9JM 9JN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABUFD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a307t-9d5d0ad60fd23fbb76bb152d16ade1bbea954ed51b20d4ed6682e83e31cf458d3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127086900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0341-8162 |
| IngestDate | Fri Nov 14 18:41:18 EST 2025 Tue Nov 18 21:45:25 EST 2025 Sat Nov 29 07:20:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a307t-9d5d0ad60fd23fbb76bb152d16ade1bbea954ed51b20d4ed6682e83e31cf458d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5603-6430 0000-0002-8350-812X |
| PQID | 3165869985 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3165869985 crossref_citationtrail_10_1016_j_catena_2023_107717 crossref_primary_10_1016_j_catena_2023_107717 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Catena (Giessen) |
| PublicationYear | 2024 |
| References | Hastie (10.1016/j.catena.2023.107717_b0100) 1986; 1 Chambers (10.1016/j.catena.2023.107717_b0035) 2011; 7 Frolking (10.1016/j.catena.2023.107717_b0070) 2010; 1 Smith (10.1016/j.catena.2023.107717_b0210) 2004; 303 Charman (10.1016/j.catena.2023.107717_b0040) 2013; 10 Steinhilber (10.1016/j.catena.2023.107717_b0215) 2012; 109 Liu (10.1016/j.catena.2023.107717_b0145) 2019; 53 Zhang (10.1016/j.catena.2023.107717_b0255) 2020; 26 Friedlingstein (10.1016/j.catena.2023.107717_b0065) 2006; 19 Rastogi (10.1016/j.catena.2023.107717_b0200) 2020; 10 Yu (10.1016/j.catena.2023.107717_b0245) 2003; 81 van Breemen (10.1016/j.catena.2023.107717_b0230) 1995; 10 IPCC (10.1016/j.catena.2023.107717_b0125) 2014 Hughes (10.1016/j.catena.2023.107717_b0115) 2003; 91 Bunsen (10.1016/j.catena.2023.107717_b0030) 2020; 26 Page (10.1016/j.catena.2023.107717_b0195) 2011; 17 Zhao (10.1016/j.catena.2023.107717_b0260) 2014; 128 Loisel (10.1016/j.catena.2023.107717_b0150) 2021; 11 Clymo (10.1016/j.catena.2023.107717_b0050) 1984; 303 Hughes (10.1016/j.catena.2023.107717_b0110) 2000; 3 Leifeld (10.1016/j.catena.2023.107717_b0140) 2018; 9 Fordham (10.1016/j.catena.2023.107717_b0060) 2017; 40 Yu (10.1016/j.catena.2023.107717_b0250) 2010; 37 Loisel (10.1016/j.catena.2023.107717_b0155) 2020; 8 Morris (10.1016/j.catena.2023.107717_b0185) 2018; 115 Jones (10.1016/j.catena.2023.107717_b0130) 2010; 107 Wen (10.1016/j.catena.2023.107717_b0240) 2010; 39 Loisel (10.1016/j.catena.2023.107717_b0165) 2013; 118 Moore (10.1016/j.catena.2023.107717_b0180) 2007; 10 Granath (10.1016/j.catena.2023.107717_b0090) 2010; 91 Chaudhary (10.1016/j.catena.2023.107717_b0045) 2020; 26 Kubiw (10.1016/j.catena.2023.107717_b0135) 1989; 67 Craft (10.1016/j.catena.2023.107717_b0055) 1991; 14 10.1016/j.catena.2023.107717_b0105 Loisel (10.1016/j.catena.2023.107717_b0160) 2013; 69 Wang (10.1016/j.catena.2023.107717_b0235) 2014; 99 Swindles (10.1016/j.catena.2023.107717_b0225) 2018; 24 10.1016/j.catena.2023.107717_b0020 Morris (10.1016/j.catena.2023.107717_b0190) 2015; 42 Gallego-Sala (10.1016/j.catena.2023.107717_b0075) 2018; 8 Bell (10.1016/j.catena.2023.107717_b0015) 2018; 331 Mäkilä (10.1016/j.catena.2023.107717_b0175) 2001; 89 Sullivan (10.1016/j.catena.2023.107717_b0220) 2008; 11 Blaauw (10.1016/j.catena.2023.107717_b0025) 2011; 6 Barber (10.1016/j.catena.2023.107717_b0010) 1994; 4 Longman (10.1016/j.catena.2023.107717_b0170) 2021; 17 Appleby (10.1016/j.catena.2023.107717_b0005) 1978; 5 Gorham (10.1016/j.catena.2023.107717_b0080) 1991; 1 Young (10.1016/j.catena.2023.107717_bib261) 2021; 11 Robbins (10.1016/j.catena.2023.107717_b0205) 1975; 39 Gorham (10.1016/j.catena.2023.107717_b0085) 2012; 58 Ingram (10.1016/j.catena.2023.107717_b0120) 1982; 297 Grimm (10.1016/j.catena.2023.107717_b0095) 1987; 13 |
| References_xml | – volume: 7 start-page: 1 year: 2011 ident: 10.1016/j.catena.2023.107717_b0035 article-title: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics publication-title: Mires and Peat – volume: 118 start-page: 41 year: 2013 ident: 10.1016/j.catena.2023.107717_b0165 article-title: Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska publication-title: J. Geophys. Res.-Biogeosci. doi: 10.1029/2012JG001978 – volume: 109 start-page: 5967 year: 2012 ident: 10.1016/j.catena.2023.107717_b0215 article-title: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1118965109 – volume: 1 start-page: 297 year: 1986 ident: 10.1016/j.catena.2023.107717_b0100 article-title: Generalized additive models publication-title: Stat. Sci. – volume: 3 start-page: 7 year: 2000 ident: 10.1016/j.catena.2023.107717_b0110 article-title: A reappraisal of the mechanisms leading to ombrotrophy in British raised mires publication-title: Ecol. Lett. doi: 10.1046/j.1461-0248.2000.00118.x – volume: 39 start-page: 285 year: 1975 ident: 10.1016/j.catena.2023.107717_b0205 article-title: Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(75)90198-2 – volume: 10 start-page: 8592 year: 2020 ident: 10.1016/j.catena.2023.107717_b0200 article-title: Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax) publication-title: Sci. Rep. doi: 10.1038/s41598-020-65032-x – volume: 303 start-page: 353 year: 2004 ident: 10.1016/j.catena.2023.107717_b0210 article-title: Siberian peatlands a net carbon sink and global methane source since the early Holocene publication-title: Science doi: 10.1126/science.1090553 – volume: 9 start-page: 1071 year: 2018 ident: 10.1016/j.catena.2023.107717_b0140 article-title: The underappreciated potential of peatlands in global climate change mitigation strategies publication-title: Nat. Commun. doi: 10.1038/s41467-018-03406-6 – volume: 42 start-page: 10788 year: 2015 ident: 10.1016/j.catena.2023.107717_b0190 article-title: Untangling climate signals from autogenic changes in long-term peatland development publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL066824 – volume: 99 start-page: 34 year: 2014 ident: 10.1016/j.catena.2023.107717_b0235 article-title: Carbon dynamics of peatlands in China during the Holocene publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2014.06.004 – volume: 1 start-page: 182 year: 1991 ident: 10.1016/j.catena.2023.107717_b0080 article-title: Northern peatlands: role in the carbon cycle and probable responses to climatic warming publication-title: Ecol. Appl. doi: 10.2307/1941811 – volume: 89 start-page: 589 year: 2001 ident: 10.1016/j.catena.2023.107717_b0175 article-title: Aapa mires as a carbon sink and source during the Holocene publication-title: J. Ecol. doi: 10.1046/j.0022-0477.2001.00586.x – volume: 128 start-page: 139 year: 2014 ident: 10.1016/j.catena.2023.107717_b0260 article-title: Peatland initiation and carbon accumulation in China over the last 50,000 years publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2013.11.003 – volume: 39 start-page: 262 year: 2010 ident: 10.1016/j.catena.2023.107717_b0240 article-title: Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China publication-title: Boreas doi: 10.1111/j.1502-3885.2009.00125.x – volume: 69 start-page: 125 year: 2013 ident: 10.1016/j.catena.2023.107717_b0160 article-title: Holocene peatland carbon dynamics in Patagonia publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2013.02.023 – volume: 26 start-page: 2435 year: 2020 ident: 10.1016/j.catena.2023.107717_b0255 article-title: Decreased carbon accumulation feedback driven by climate induced drying of two southern boreal bogs over recent centuries publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15005 – volume: 297 start-page: 300 year: 1982 ident: 10.1016/j.catena.2023.107717_b0120 article-title: Size and shape in raised mire ecosystems: a geophysical model publication-title: Nature doi: 10.1038/297300a0 – volume: 91 start-page: 3047 year: 2010 ident: 10.1016/j.catena.2023.107717_b0090 article-title: Rapid ecosystem shifts in peatlands: linking plant physiology and succession publication-title: Ecology doi: 10.1890/09-2267.1 – volume: 8 start-page: 273 year: 2020 ident: 10.1016/j.catena.2023.107717_b0155 article-title: Abrupt Fen-Bog Transition Across Southern Patagonia: Timing, Causes, and Impacts on Carbon Sequestration publication-title: Front. Ecol. Evol. doi: 10.3389/fevo.2020.00273 – volume: 53 start-page: 2161 year: 2019 ident: 10.1016/j.catena.2023.107717_b0145 article-title: Temperature influence on peatland carbon accumulation over the last century in Northeast China publication-title: Clim. Dyn. doi: 10.1007/s00382-019-04813-1 – volume: 14 start-page: 175 year: 1991 ident: 10.1016/j.catena.2023.107717_b0055 article-title: Loss on ignition and kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion publication-title: Estuar. Coasts doi: 10.2307/1351691 – volume: 6 start-page: 457 year: 2011 ident: 10.1016/j.catena.2023.107717_b0025 article-title: Flexible paleoclimate age-depth models using an autoregressive gamma process publication-title: Bayesian Anal. doi: 10.1214/ba/1339616472 – volume: 17 start-page: 2633 year: 2021 ident: 10.1016/j.catena.2023.107717_b0170 article-title: Carbon accumulation rates of Holocene peatlands in central–eastern Europe document the driving role of human impact over the past 4000 years publication-title: Clim. Past doi: 10.5194/cp-17-2633-2021 – volume: 1 start-page: 3 year: 2010 ident: 10.1016/j.catena.2023.107717_b0070 article-title: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation publication-title: Earth Syst. Dyn. doi: 10.5194/esd-1-1-2010 – volume: 10 start-page: 929 year: 2013 ident: 10.1016/j.catena.2023.107717_b0040 article-title: Climate-related changes in peatland carbon accumulation during the last millennium publication-title: Biogeosciences doi: 10.5194/bg-10-929-2013 – volume: 58 start-page: 77 year: 2012 ident: 10.1016/j.catena.2023.107717_b0085 article-title: Long-term carbon sequestration in North American peatlands publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2012.09.018 – volume: 13 start-page: 13 year: 1987 ident: 10.1016/j.catena.2023.107717_b0095 article-title: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares publication-title: Comput. Geosci. doi: 10.1016/0098-3004(87)90022-7 – volume: 11 start-page: 70 year: 2021 ident: 10.1016/j.catena.2023.107717_b0150 article-title: Expert assessment of future vulnerability of the global peatland carbon sink publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-00944-0 – volume: 67 start-page: 3534 year: 1989 ident: 10.1016/j.catena.2023.107717_b0135 article-title: The developmental history of peatlands at Muskiki and Marguerite lakes, Alberta publication-title: Can. J. Bot. doi: 10.1139/b89-435 – volume: 24 start-page: 738 year: 2018 ident: 10.1016/j.catena.2023.107717_b0225 article-title: Ecosystem state shifts during long-term development of an Amazonian peatland publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13950 – volume: 115 start-page: 4851 year: 2018 ident: 10.1016/j.catena.2023.107717_b0185 article-title: Global peatland initiation driven by regionally asynchronous warming publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1717838115 – volume: 26 start-page: 5778 year: 2020 ident: 10.1016/j.catena.2023.107717_b0030 article-title: Carbon storage dynamics in peatlands: Comparing recent- and long-term accumulation histories in southern Patagonia publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15262 – volume: 11 start-page: 61 year: 2008 ident: 10.1016/j.catena.2023.107717_b0220 article-title: Temperature and microtopography interact to control carbon cycling in a high arctic fen publication-title: Ecosystems doi: 10.1007/s10021-007-9107-y – volume: 107 start-page: 7347 year: 2010 ident: 10.1016/j.catena.2023.107717_b0130 article-title: Rapid deglacial and early Holocene expansion of peatlands in Alaska publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0911387107 – volume: 303 start-page: 605 year: 1984 ident: 10.1016/j.catena.2023.107717_b0050 article-title: The limits to peat bog growth publication-title: Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. – ident: 10.1016/j.catena.2023.107717_b0105 doi: 10.3974/geodb.2016.03.11.V1 – volume: 8 start-page: 907 year: 2018 ident: 10.1016/j.catena.2023.107717_b0075 article-title: Latitudinal limits to the predicted increase of the peatland carbon sink with warming publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-018-0271-1 – volume: 17 start-page: 798 year: 2011 ident: 10.1016/j.catena.2023.107717_b0195 article-title: Global and regional importance of the tropical peatland carbon pool publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02279.x – volume: 10 start-page: 949 year: 2007 ident: 10.1016/j.catena.2023.107717_b0180 article-title: Litter decomposition in temperate peatland ecosystems: The effect of substrate and site publication-title: Ecosystems doi: 10.1007/s10021-007-9064-5 – volume: 40 start-page: 1348 year: 2017 ident: 10.1016/j.catena.2023.107717_b0060 article-title: PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales publication-title: Ecography doi: 10.1111/ecog.03031 – volume: 4 start-page: 198 year: 1994 ident: 10.1016/j.catena.2023.107717_b0010 article-title: A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England publication-title: The Holocene doi: 10.1177/095968369400400209 – volume: 10 start-page: 270 year: 1995 ident: 10.1016/j.catena.2023.107717_b0230 article-title: How Sphagnum bogs down other plants publication-title: Trends Ecol. Evol. doi: 10.1016/0169-5347(95)90007-1 – volume: 26 start-page: 4119 year: 2020 ident: 10.1016/j.catena.2023.107717_b0045 article-title: Modelling past and future peatland carbon dynamics across the pan-Arctic publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15099 – volume: 331 start-page: 29 year: 2018 ident: 10.1016/j.catena.2023.107717_b0015 article-title: Sensitivity of peatland litter decomposition to changes in temperature and rainfall publication-title: Geoderma doi: 10.1016/j.geoderma.2018.06.002 – year: 2014 ident: 10.1016/j.catena.2023.107717_b0125 – volume: 37 start-page: 1 year: 2010 ident: 10.1016/j.catena.2023.107717_b0250 article-title: Global peatland dynamics since the Last Glacial Maximum publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL043584 – volume: 5 start-page: 1 year: 1978 ident: 10.1016/j.catena.2023.107717_b0005 article-title: The calculation of Pb dates assuming a constant rate of supply of unsupported Pb to the sediment publication-title: Catena doi: 10.1016/S0341-8162(78)80002-2 – volume: 91 start-page: 253 year: 2003 ident: 10.1016/j.catena.2023.107717_b0115 article-title: Mire development across the fen–bog transition on the Teifi floodplain at Tregaron Bog, Ceredigion, Wales, and a comparison with 13 other raised bogs publication-title: J. Ecol. doi: 10.1046/j.1365-2745.2003.00762.x – volume: 81 start-page: 267 year: 2003 ident: 10.1016/j.catena.2023.107717_b0245 article-title: Understanding Holocene peat accumulation pattern of continental fens in western Canada publication-title: Can. J. Bot. doi: 10.1139/b03-016 – volume: 11 start-page: 9547 year: 2021 ident: 10.1016/j.catena.2023.107717_bib261 article-title: A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores publication-title: Sci Rep doi: 10.1038/s41598-021-88766-8 – ident: 10.1016/j.catena.2023.107717_b0020 doi: 10.1029/2008GM000829 – volume: 19 start-page: 3337 year: 2006 ident: 10.1016/j.catena.2023.107717_b0065 article-title: Climate-Carbon cycle feedback analysis: results from the C4MIP model intercomparison publication-title: J. Clim. doi: 10.1175/JCLI3800.1 |
| SSID | ssj0004751 |
| Score | 2.4304874 |
| Snippet | Peatland carbon accumulation plays a vital role in the global carbon pool and climate change dynamics. However, understanding how peatland carbon accumulation... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 107717 |
| SubjectTerms | carbon carbon sinks catenas climate change ecosystems net primary productivity peat peatlands phase transition plant litter temperature vegetation water content watersheds |
| Title | Considering the autogenic processes of the ecosystem to analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate change |
| URI | https://www.proquest.com/docview/3165869985 |
| Volume | 236 |
| WOSCitedRecordID | wos001127086900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0341-8162 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004751 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFkQviBYqWh5aJIRA1VZ-23usqrSAosAhlXKz9uU2VbBDElcpB34Gv5fZhx1HIFEOXKzV7my88nyZnZ2dB0JvUsqlFJlHBGwGJPILQXgoYuInGWMFhUnCBAoP0uEwG4_pl17vRxMLczNNyzJbrejsv7Ia-oDZOnT2H9jd_ih0QBuYDk9gOzzvxPimBGcTB8XqZQXEE3E0s0EBNs2sceYQlc3krDVQptOTfFdmYKHd2l1dCe0SDQJ7agLg2Jxr92Uh6q-u7pdRXhUo3zY5s7mMuLqV8KrpBLRh5UKLu0rwKXSXzBgoJno9ZcccMZjUZjdk5QqAe7kWkFY6VuXlql5fJzlj93ltwr66Fowg0i5cNoazidyKfJL5m1I5CJOj2TEcTuG8Sf4o663Z4Vpn-oRFH-s68I5-vbc19_nDz_nZxWCQj_rj0dvZN6KrjunbeVeC5R7aDtKYglTcPvnYH39aR9ampoBnu8Im-NJ4CP7-4k3lZnNvNwrL6DF65E4a-MQiZBf1VLmHHrqi91e3e-jBuanqDK1dJ-EX-J1LQ_7-CfrZARIGUOAWSLgFEq4KM9QCCS8r7IBkBjpA0rQNkLAFEu4CSU_tAAlrsi6QsAXSU3Rx1h-dfiCuigdhsH8sCZWx9JhMvEIGYcF5mnAOSqP0EyaVz7liNI6UjH0eeBIaSZIFKtO2eVFEcSbDfbRVVqV6hjBlKU8jGoUqLnSKXeapTEkeJ6GUIffkAQqbz58Ll-JeV1qZ5o0v43VumZZrpuWWaQeItLNmNsXLX-hfN5zNQRbrCzZWqqpe5KEP-nxCaRYf3oHmOdpZ_xteoK3lvFYv0X1xs5ws5q8cEn8B7ue1NA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considering+the+autogenic+processes+of+the+ecosystem+to+analyze+the+sensitivity+of+peatland+carbon+accumulation+to+temperature+and+hydroclimate+change&rft.jtitle=Catena+%28Giessen%29&rft.au=Liu%2C+Hanxiang&rft.au=Han%2C+Dongxue&rft.au=Wang%2C+Guoping&rft.date=2024-03-15&rft.issn=0341-8162&rft.volume=236+p.107717-&rft_id=info:doi/10.1016%2Fj.catena.2023.107717&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |