Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts

MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS nano Ročník 15; číslo 7; s. 11014 - 11039
Hlavní autor: Cao, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Chemical Society 27.07.2021
Témata:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
AbstractList MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
Author Cao, Yang
AuthorAffiliation Department of Energy and Resources Engineering, College of Engineering
AuthorAffiliation_xml – name: Department of Energy and Resources Engineering, College of Engineering
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-5251-8747
  surname: Cao
  fullname: Cao, Yang
  email: caoyangchem@pku.edu.cn
BookMark eNp9kM9LwzAUgINMcJuevfYoSLf8aNrmKHM6YTLxB3grr2kyO7pkJqmy_97ODQ-CnvIg3_d4fAPUM9YohM4JHhFMyRikN2DsiEhM8kwcoT4RLI1xnr72fmZOTtDA-xXGPMuztI8WjxaqNWwiMFV0XTslQ21NFOwnuCqa1cu3-EE5bd0ajFTRvX2i0WxbObtUJpp-2Kb95icQoNn64E_RsYbGq7PDO0QvN9PnySyeL27vJlfzGBhOQ5ymQiithGSQk5KKkmMGQmoQLFF5RblkpKw41RktucaayaxKkyRlUGYV4Qkboov93o2z763yoVjXXqqmAaNs6wvKOaEEs1x0KN-j0lnvndKFrAPszg4O6qYguNgFLA4Bi0PAzhv_8jauXoPb_mNc7o3uo1jZ1pkuwZ_0Fx2hhms
CitedBy_id crossref_primary_10_1021_acs_inorgchem_5c02517
crossref_primary_10_1016_j_diamond_2023_110342
crossref_primary_10_3390_nano13030478
crossref_primary_10_3390_cryst14080673
crossref_primary_10_3390_mi15030349
crossref_primary_10_1007_s12274_022_4507_z
crossref_primary_10_1016_j_molliq_2025_128522
crossref_primary_10_1016_j_catcom_2023_106693
crossref_primary_10_1016_j_ijhydene_2023_10_103
crossref_primary_10_1039_D3RA07984H
crossref_primary_10_1007_s11426_022_1287_4
crossref_primary_10_1016_j_apcatb_2022_121458
crossref_primary_10_1016_j_chempr_2024_04_011
crossref_primary_10_1016_j_ijhydene_2024_01_027
crossref_primary_10_1016_j_jechem_2023_12_014
crossref_primary_10_1021_jacs_4c00781
crossref_primary_10_1016_j_fuel_2025_136208
crossref_primary_10_1016_j_triboint_2022_107760
crossref_primary_10_1038_s41929_024_01148_x
crossref_primary_10_1016_j_mtener_2023_101373
crossref_primary_10_1016_j_ijhydene_2022_06_198
crossref_primary_10_1016_j_ijhydene_2022_11_309
crossref_primary_10_1039_D4NR05278A
crossref_primary_10_1007_s42823_024_00724_2
crossref_primary_10_1016_j_mtsust_2025_101194
crossref_primary_10_1021_acssuschemeng_5c03481
crossref_primary_10_1002_adma_202419790
crossref_primary_10_1016_j_cclet_2024_110049
crossref_primary_10_1002_advs_202408869
crossref_primary_10_1016_j_micrna_2023_207613
crossref_primary_10_1002_adma_202314031
crossref_primary_10_1021_jacs_5c03556
crossref_primary_10_1016_j_ijhydene_2023_07_021
crossref_primary_10_1007_s11581_024_05544_y
crossref_primary_10_1016_j_apsusc_2025_164401
crossref_primary_10_1016_j_electacta_2022_141249
crossref_primary_10_1007_s11172_024_4656_1
crossref_primary_10_3390_gels10090558
crossref_primary_10_1002_smll_202505185
crossref_primary_10_1016_j_jelechem_2022_116448
crossref_primary_10_1016_j_elecom_2023_107563
crossref_primary_10_1063_5_0191316
crossref_primary_10_1016_j_ccr_2024_215715
crossref_primary_10_1016_j_susc_2023_122395
crossref_primary_10_1016_j_apsusc_2022_153893
crossref_primary_10_1016_j_jcis_2023_06_039
crossref_primary_10_1002_smtd_202400572
crossref_primary_10_1002_smll_202308672
crossref_primary_10_1016_j_electacta_2022_141596
crossref_primary_10_1016_j_mtcomm_2023_106609
crossref_primary_10_1002_smll_202403089
crossref_primary_10_3390_sym15040801
crossref_primary_10_1016_j_cattod_2024_115020
crossref_primary_10_1039_D4NH00005F
crossref_primary_10_3390_catal14010050
crossref_primary_10_1002_smll_202203173
crossref_primary_10_1039_D5NH00111K
crossref_primary_10_1016_j_apcatb_2022_121302
crossref_primary_10_1016_j_cclet_2025_111650
crossref_primary_10_1016_j_cej_2025_164783
crossref_primary_10_1016_j_jpowsour_2025_238148
crossref_primary_10_1039_D1NR07438E
crossref_primary_10_1002_aenm_202103301
crossref_primary_10_1016_j_ijhydene_2022_11_107
crossref_primary_10_1016_j_fuel_2025_136817
crossref_primary_10_1007_s10971_025_06696_7
crossref_primary_10_1016_j_ijhydene_2025_150944
crossref_primary_10_1016_j_ijhydene_2024_04_311
crossref_primary_10_1016_j_jelechem_2025_119099
crossref_primary_10_1021_acs_iecr_5c00532
crossref_primary_10_1002_ece2_73
crossref_primary_10_1021_acs_jpcc_5c02707
crossref_primary_10_1002_adsu_202300017
crossref_primary_10_1007_s11814_025_00515_z
crossref_primary_10_1016_j_cej_2023_144373
crossref_primary_10_1016_j_cplett_2024_141504
crossref_primary_10_1039_D5TA03626G
crossref_primary_10_1063_5_0230967
crossref_primary_10_1007_s11426_022_1545_0
crossref_primary_10_1007_s12274_023_5629_7
crossref_primary_10_1016_j_seppur_2025_132569
crossref_primary_10_1088_1361_665X_ad78cd
crossref_primary_10_1016_j_jtice_2022_104638
crossref_primary_10_1016_j_mtchem_2023_101747
crossref_primary_10_1002_cssc_202400678
crossref_primary_10_1002_smll_202508200
crossref_primary_10_1007_s40820_023_01182_7
crossref_primary_10_1016_j_ijhydene_2024_12_388
crossref_primary_10_1039_D5CC01856K
crossref_primary_10_1002_aenm_202300145
crossref_primary_10_1002_cplu_202400278
crossref_primary_10_1016_j_cclet_2022_03_071
crossref_primary_10_1002_adma_202401880
crossref_primary_10_1016_j_jallcom_2023_169831
crossref_primary_10_1016_j_apcatb_2023_122445
crossref_primary_10_7498_aps_74_20250410
crossref_primary_10_1007_s12034_023_02891_w
crossref_primary_10_1016_j_mtener_2023_101487
crossref_primary_10_1002_slct_202405247
crossref_primary_10_1016_j_jcat_2023_07_002
crossref_primary_10_1016_j_jallcom_2025_180642
crossref_primary_10_1039_D2CY01749K
crossref_primary_10_1016_j_apsusc_2022_155354
crossref_primary_10_1039_D4SC07309F
crossref_primary_10_1016_j_cej_2025_162907
crossref_primary_10_1016_j_electacta_2024_143774
crossref_primary_10_1016_j_ijhydene_2024_04_218
crossref_primary_10_1039_D4QI01853B
crossref_primary_10_1002_smtd_202301771
crossref_primary_10_1021_acselectrochem_4c00178
crossref_primary_10_1002_adfm_202413720
crossref_primary_10_1142_S0217984924502002
crossref_primary_10_1002_smll_202305888
crossref_primary_10_1021_accountsmr_4c00306
crossref_primary_10_1016_j_ijhydene_2022_08_083
crossref_primary_10_1016_j_ijhydene_2025_01_336
crossref_primary_10_1016_j_fuel_2024_133743
crossref_primary_10_1016_j_cej_2023_147725
crossref_primary_10_1007_s10562_025_04957_2
crossref_primary_10_1088_1361_648X_ad53b5
crossref_primary_10_1016_j_jtice_2023_105014
crossref_primary_10_1111_jace_19693
crossref_primary_10_1016_j_jpowsour_2022_232519
crossref_primary_10_1016_j_apsusc_2022_156309
crossref_primary_10_54691_3x4z9n69
crossref_primary_10_1016_j_nanoen_2023_108681
crossref_primary_10_1002_celc_202200420
crossref_primary_10_1016_j_ijhydene_2024_05_203
crossref_primary_10_1016_j_apsusc_2024_160704
crossref_primary_10_1002_smtd_202401486
crossref_primary_10_1016_j_apsusc_2023_157256
crossref_primary_10_1007_s43207_024_00429_2
crossref_primary_10_53941_rset_2025_100007
crossref_primary_10_1002_ejic_202300492
crossref_primary_10_3390_membranes12080818
crossref_primary_10_1016_j_cej_2023_141858
crossref_primary_10_1016_j_microc_2024_111639
crossref_primary_10_1016_j_jcat_2025_116178
crossref_primary_10_1002_advs_202500226
crossref_primary_10_1016_j_cej_2024_153442
crossref_primary_10_1039_D3MH00677H
crossref_primary_10_1002_cey2_521
crossref_primary_10_1007_s10904_025_03720_9
crossref_primary_10_3390_cryst13081271
crossref_primary_10_1038_s41929_022_00781_8
crossref_primary_10_1016_j_molstruc_2025_141946
crossref_primary_10_1039_D5CP02584B
crossref_primary_10_1002_smll_202204557
crossref_primary_10_1016_j_matchemphys_2024_129234
crossref_primary_10_1016_j_cej_2023_145524
crossref_primary_10_1016_j_ijhydene_2023_05_290
crossref_primary_10_1016_j_mtsust_2023_100346
crossref_primary_10_1007_s42114_025_01289_y
crossref_primary_10_1039_D3RA04738E
crossref_primary_10_1021_jacs_4c00948
crossref_primary_10_1038_s41929_024_01171_y
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_3390_atmos14101486
crossref_primary_10_1002_cey2_656
crossref_primary_10_1016_j_electacta_2023_143670
crossref_primary_10_1016_j_jallcom_2022_167948
crossref_primary_10_1002_pssr_202300169
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1039_D4NR00876F
crossref_primary_10_1016_j_apsusc_2024_161335
crossref_primary_10_1021_acs_nanolett_5c00919
crossref_primary_10_1016_S1872_2067_23_64469_9
crossref_primary_10_1088_1361_6528_acd854
crossref_primary_10_1016_j_cej_2022_134963
crossref_primary_10_1016_S1872_2067_24_60105_1
crossref_primary_10_1039_D5SE00541H
crossref_primary_10_3390_app15031629
crossref_primary_10_1002_adfm_202316266
crossref_primary_10_1088_1402_4896_adb2c2
crossref_primary_10_1016_j_electacta_2023_142191
crossref_primary_10_1038_s41598_024_67252_x
crossref_primary_10_1016_j_jallcom_2023_169655
crossref_primary_10_1002_chem_202501473
crossref_primary_10_1016_j_cej_2023_141939
crossref_primary_10_1016_j_ijhydene_2022_10_140
crossref_primary_10_1016_j_ijhydene_2023_12_159
crossref_primary_10_1016_j_jechem_2022_07_020
crossref_primary_10_1016_j_ijhydene_2025_04_390
crossref_primary_10_1016_j_apcatb_2023_123399
crossref_primary_10_1021_prechem_3c00033
crossref_primary_10_1002_adfm_202206163
crossref_primary_10_1016_j_carbon_2024_119614
crossref_primary_10_1016_j_jcis_2025_138444
crossref_primary_10_1016_j_jechem_2022_02_029
crossref_primary_10_1002_cphc_202300477
crossref_primary_10_1016_j_ccr_2025_216682
crossref_primary_10_1039_D5NR01584G
crossref_primary_10_1002_adma_202500285
crossref_primary_10_1002_aoc_70396
crossref_primary_10_1039_D3NR05458F
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1016_j_ijhydene_2025_150671
crossref_primary_10_3762_bjnano_16_104
crossref_primary_10_1016_j_ijhydene_2024_07_267
crossref_primary_10_1002_smll_202401537
crossref_primary_10_1016_j_jece_2023_111663
crossref_primary_10_1039_D2QM00931E
crossref_primary_10_1088_2043_6262_ad9ff1
crossref_primary_10_1039_D5TC00767D
crossref_primary_10_1002_elan_202400239
crossref_primary_10_1016_j_jelechem_2024_118342
crossref_primary_10_1016_j_catcom_2022_106427
crossref_primary_10_1016_j_apcatb_2023_123015
crossref_primary_10_1016_j_fuel_2025_134573
crossref_primary_10_1038_s41467_024_44717_1
crossref_primary_10_1016_j_jallcom_2024_177692
crossref_primary_10_1016_j_electacta_2023_142780
crossref_primary_10_1016_j_matchemphys_2024_129784
crossref_primary_10_3390_molecules29112551
crossref_primary_10_1016_j_cherd_2022_07_026
crossref_primary_10_1002_advs_202407061
crossref_primary_10_1016_j_ijhydene_2024_02_109
crossref_primary_10_1016_j_carbon_2022_11_029
crossref_primary_10_5757_ASCT_2023_32_2_48
crossref_primary_10_3390_molecules29020523
crossref_primary_10_1007_s10008_024_06111_1
crossref_primary_10_1002_aelm_202400748
crossref_primary_10_1002_adfm_202504278
crossref_primary_10_1039_D1SE01690C
crossref_primary_10_1088_1402_4896_ac8648
crossref_primary_10_1016_j_est_2023_107614
crossref_primary_10_1021_acsaem_5c00619
Cites_doi 10.1038/nphys4188
10.1021/ja983043c
10.1039/C7TA03172F
10.1002/adfm.201702300
10.1002/aenm.201602086
10.1002/anie.201803543
10.1039/C6TA09612C
10.1021/acsnano.6b06392
10.1021/nl403036h
10.1038/s41563-020-0788-3
10.1021/acsnano.9b07763
10.1002/anie.201600686
10.1021/jacs.8b12133
10.1002/cssc.201901811
10.1002/adma.201707105
10.1021/cs500923c
10.1080/01614948909351347
10.1021/jacs.6b07127
10.1002/asia.201800359
10.1021/acsnano.5b00786
10.1021/acsami.9b11708
10.1039/c3cc45936e
10.1038/s41467-019-08877-9
10.1038/srep05348
10.1039/C9TC02256B
10.1073/pnas.1508075112
10.1038/nnano.2014.64
10.1002/cctc.201402128
10.1021/ja510328m
10.1002/cctc.201801541
10.1021/nl403661s
10.1039/C5TA02198G
10.1002/adfm.201604943
10.1021/acsami.7b10230
10.1021/acs.inorgchem.9b01814
10.1039/C6NR06836G
10.1021/acscatal.7b02885
10.1039/C5NR08553E
10.1021/acscatal.0c00960
10.1007/s40820-019-0277-x
10.1038/nmat4465
10.1021/acsami.5b08420
10.1038/35104634
10.1021/acsenergylett.8b01840
10.1021/acs.chemmater.7b04428
10.1016/0043-1648(72)90124-X
10.1021/acscatal.8b00883
10.1016/j.electacta.2019.135454
10.1016/j.mattod.2016.10.004
10.1021/jacs.0c04231
10.1021/cr1002326
10.1021/acsaem.8b00010
10.1021/acsami.6b08740
10.1021/acsami.5b10252
10.1021/acsami.5b02586
10.1002/adma.201503270
10.1039/D0TA08679G
10.1007/s11467-018-0812-0
10.1002/adfm.201908520
10.1021/acscatal.6b01848
10.1016/j.mattod.2019.12.003
10.1021/acs.nanolett.8b04104
10.1021/acs.chemmater.5b03997
10.1021/acsami.8b07163
10.1002/adma.201504866
10.1039/C7TA02577G
10.1021/jacs.0c09527
10.1021/acsnano.9b01266
10.1039/C8TA05033C
10.1002/adfm.201701825
10.1016/j.jpowsour.2016.11.041
10.1016/j.nanoen.2018.04.067
10.1039/D0TA02538K
10.1021/acscatal.7b00876
10.1021/acsenergylett.7b00602
10.1002/advs.201900090
10.1021/ja408329q
10.1038/s41557-018-0136-2
10.1002/anie.201703066
10.1002/smll.201501822
10.1021/acscatal.7b03374
10.1039/C5EE00751H
10.1038/nmat4588
10.1021/acs.est.7b01466
10.1002/smll.201900578
10.1126/science.1256815
10.1002/smll.201905738
10.1038/s41467-020-17199-0
10.1039/C6TA05110C
10.1021/cs300451q
10.1021/acsami.7b06795
10.1016/j.ijhydene.2013.01.151
10.1038/ncomms15113
10.1002/anie.201812475
10.1039/C5TA03766B
10.1021/acssuschemeng.9b03906
10.1126/science.1257443
10.1039/D0EE01706J
10.1080/15583724.2017.1309662
10.1016/j.nanoen.2016.08.065
10.1021/acscatal.0c04396
10.1038/nmat3439
10.1002/aenm.201702779
10.1021/jacs.6b05940
10.1002/aenm.201600116
10.1016/j.apmt.2018.01.006
10.1016/j.jallcom.2021.159066
10.1021/acs.langmuir.7b03851
10.1038/ncomms3995
10.1038/ncomms7293
10.1038/nmat3700
10.1038/nmat4660
10.1021/acscatal.6b01942
10.1021/acsenergylett.0c00305
10.1021/jacs.9b02501
10.1016/S0010-8545(01)00392-7
10.1103/PhysRevB.44.3955
10.1002/aenm.201801357
10.1016/j.chempr.2017.12.019
10.1021/acsami.9b07705
10.1002/smll.201800640
10.1002/chem.201801018
10.1002/smll.201805511
10.1016/j.apmt.2016.02.001
10.1038/nmat1752
10.1021/acsnano.8b07744
10.1021/acsnano.5b05652
10.1002/adma.201803477
10.1002/adfm.201102111
10.1021/ja404523s
10.1103/PhysRevB.98.184513
10.1021/acscatal.6b02663
10.1021/jacs.9b12113
10.1039/C8CC00766G
10.1021/acscatal.6b01211
10.1002/adma.201304759
10.1021/acsenergylett.7b00111
10.1038/s41467-019-12997-7
10.1016/S0022-0728(77)80363-X
10.1126/science.aad2114
10.1126/science.1141483
10.1021/acs.accounts.8b00002
10.1021/acsami.8b19251
10.1021/jacs.8b10016
10.1038/s41467-019-09269-9
10.1039/C4CY01162G
10.1021/nl403620g
10.1021/acs.jpcc.6b01838
10.1021/acscatal.6b02076
10.1016/S0013-4686(02)00329-8
10.1039/c4ta01004c
10.1021/acs.nanolett.5b04331
10.1002/adfm.201809151
10.1002/adfm.202000551
10.1021/acs.chemmater.5b04815
10.1002/adfm.201901958
10.1021/cs501970w
10.1039/C4TA04858J
10.1021/acs.accounts.0c00127
10.1021/nl400258t
10.1039/C9CY01901D
10.1002/adma.201807764
10.1021/ja201269b
10.1039/C1SC00117E
10.1016/j.joule.2017.07.011
10.1039/C6CC09952A
10.1021/nl404444k
10.1021/acscatal.8b00783
10.1021/acsnano.9b05226
10.1021/acsnano.8b00942
10.1021/ja0504690
10.1021/jacs.6b03714
10.1039/C6NR02803A
10.1126/science.aad4998
10.1039/C9TA02801C
10.1021/nn503027k
10.1021/acs.nanolett.5b00388
10.1002/smll.202002212
10.1021/nl201874w
10.1038/nchem.1589
10.1021/acsnano.9b01583
10.1002/adfm.201300318
10.1002/anie.201909698
10.1039/C9TA00545E
10.1016/j.ijhydene.2020.03.184
10.1038/s41557-018-0035-6
10.1002/adma.201701486
10.1021/jacs.7b08881
10.1039/D0TA00897D
10.1039/C8CY02532K
10.1038/s41467-019-13486-7
10.1021/acsnano.9b07324
10.1002/aenm.201902107
10.1038/natrevmats.2017.33
10.1021/acs.chemmater.6b01395
10.1002/smll.201701519
10.1021/jp2076325
10.1038/s41467-019-09210-0
10.1016/j.nanoen.2017.05.011
10.1039/C9CS00906J
10.1021/acssuschemeng.8b06717
10.1016/j.susc.2015.01.019
10.1039/C4CC06480A
10.1038/ncomms8493
10.1038/ncomms6982
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c01879
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11039
ExternalDocumentID 10_1021_acsnano_1c01879
e41434261
GroupedDBID -
.K2
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a306t-6699efe9c3a81b29b503a9cfa934e8d25c31bd52f72b5f0f3c7d64463ab7d1543
IEDL.DBID ACS
ISICitedReferencesCount 309
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679406500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 06:55:31 EDT 2025
Tue Nov 18 22:25:25 EST 2025
Sat Nov 29 05:41:35 EST 2025
Thu Jul 29 03:24:45 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 2D catalyst
HER
Pt-like activity
MoS2
mechanism
characterization
electrocatalysis
structure
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a306t-6699efe9c3a81b29b503a9cfa934e8d25c31bd52f72b5f0f3c7d64463ab7d1543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5251-8747
PQID 2551210389
PQPubID 23479
PageCount 26
ParticipantIDs proquest_miscellaneous_2551210389
crossref_citationtrail_10_1021_acsnano_1c01879
crossref_primary_10_1021_acsnano_1c01879
acs_journals_10_1021_acsnano_1c01879
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-07-27
PublicationDateYYYYMMDD 2021-07-27
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-27
  day: 27
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref194/cit194
ref98/cit98
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
Allen J. B. (ref10/cit10) 2001
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
Eliezer G. (ref11/cit11) 2011
ref31/cit31
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref18/cit18
  doi: 10.1038/nphys4188
– ident: ref24/cit24
  doi: 10.1021/ja983043c
– ident: ref7/cit7
  doi: 10.1039/C7TA03172F
– ident: ref156/cit156
  doi: 10.1002/adfm.201702300
– ident: ref121/cit121
  doi: 10.1002/aenm.201602086
– ident: ref187/cit187
  doi: 10.1002/anie.201803543
– ident: ref79/cit79
  doi: 10.1039/C6TA09612C
– ident: ref197/cit197
  doi: 10.1021/acsnano.6b06392
– ident: ref35/cit35
  doi: 10.1021/nl403036h
– ident: ref190/cit190
  doi: 10.1038/s41563-020-0788-3
– ident: ref154/cit154
  doi: 10.1021/acsnano.9b07763
– ident: ref144/cit144
  doi: 10.1002/anie.201600686
– ident: ref25/cit25
  doi: 10.1021/jacs.8b12133
– ident: ref37/cit37
  doi: 10.1002/cssc.201901811
– ident: ref39/cit39
  doi: 10.1002/adma.201707105
– ident: ref162/cit162
  doi: 10.1021/cs500923c
– ident: ref5/cit5
  doi: 10.1080/01614948909351347
– ident: ref185/cit185
  doi: 10.1021/jacs.6b07127
– ident: ref145/cit145
  doi: 10.1002/asia.201800359
– ident: ref73/cit73
  doi: 10.1021/acsnano.5b00786
– ident: ref167/cit167
  doi: 10.1021/acsami.9b11708
– ident: ref30/cit30
  doi: 10.1039/c3cc45936e
– ident: ref129/cit129
  doi: 10.1038/s41467-019-08877-9
– ident: ref207/cit207
  doi: 10.1038/srep05348
– ident: ref105/cit105
  doi: 10.1039/C9TC02256B
– ident: ref194/cit194
  doi: 10.1073/pnas.1508075112
– ident: ref22/cit22
  doi: 10.1038/nnano.2014.64
– ident: ref195/cit195
  doi: 10.1002/cctc.201402128
– ident: ref171/cit171
  doi: 10.1021/ja510328m
– ident: ref133/cit133
  doi: 10.1002/cctc.201801541
– ident: ref51/cit51
  doi: 10.1021/nl403661s
– ident: ref67/cit67
  doi: 10.1039/C5TA02198G
– ident: ref126/cit126
  doi: 10.1002/adfm.201604943
– ident: ref38/cit38
  doi: 10.1021/acsami.7b10230
– ident: ref118/cit118
  doi: 10.1021/acs.inorgchem.9b01814
– ident: ref65/cit65
  doi: 10.1039/C6NR06836G
– ident: ref137/cit137
  doi: 10.1021/acscatal.7b02885
– ident: ref203/cit203
  doi: 10.1039/C5NR08553E
– ident: ref180/cit180
  doi: 10.1021/acscatal.0c00960
– ident: ref48/cit48
  doi: 10.1007/s40820-019-0277-x
– ident: ref106/cit106
  doi: 10.1038/nmat4465
– ident: ref119/cit119
  doi: 10.1021/acsami.5b08420
– ident: ref1/cit1
  doi: 10.1038/35104634
– ident: ref56/cit56
  doi: 10.1021/acsenergylett.8b01840
– ident: ref196/cit196
  doi: 10.1021/acs.chemmater.7b04428
– ident: ref15/cit15
  doi: 10.1016/0043-1648(72)90124-X
– ident: ref164/cit164
  doi: 10.1021/acscatal.8b00883
– ident: ref60/cit60
  doi: 10.1016/j.electacta.2019.135454
– ident: ref95/cit95
  doi: 10.1016/j.mattod.2016.10.004
– ident: ref174/cit174
  doi: 10.1021/jacs.0c04231
– ident: ref9/cit9
  doi: 10.1021/cr1002326
– ident: ref84/cit84
  doi: 10.1021/acsaem.8b00010
– ident: ref158/cit158
  doi: 10.1021/acsami.6b08740
– ident: ref69/cit69
  doi: 10.1021/acsami.5b10252
– ident: ref70/cit70
  doi: 10.1021/acsami.5b02586
– ident: ref6/cit6
  doi: 10.1002/adma.201503270
– ident: ref152/cit152
  doi: 10.1039/D0TA08679G
– ident: ref202/cit202
  doi: 10.1007/s11467-018-0812-0
– ident: ref168/cit168
  doi: 10.1002/adfm.201908520
– ident: ref45/cit45
  doi: 10.1021/acscatal.6b01848
– ident: ref173/cit173
  doi: 10.1016/j.mattod.2019.12.003
– ident: ref54/cit54
  doi: 10.1021/acs.nanolett.8b04104
– ident: ref81/cit81
  doi: 10.1021/acs.chemmater.5b03997
– ident: ref169/cit169
  doi: 10.1021/acsami.8b07163
– ident: ref124/cit124
  doi: 10.1002/adma.201504866
– ident: ref31/cit31
  doi: 10.1039/C7TA02577G
– ident: ref181/cit181
  doi: 10.1021/jacs.0c09527
– ident: ref47/cit47
  doi: 10.1021/acsnano.9b01266
– ident: ref146/cit146
  doi: 10.1039/C8TA05033C
– ident: ref101/cit101
  doi: 10.1002/adfm.201701825
– ident: ref201/cit201
  doi: 10.1016/j.jpowsour.2016.11.041
– ident: ref90/cit90
  doi: 10.1016/j.nanoen.2018.04.067
– ident: ref120/cit120
  doi: 10.1039/D0TA02538K
– ident: ref186/cit186
  doi: 10.1021/acscatal.7b00876
– volume-title: Physical Electrochemistry
  year: 2011
  ident: ref11/cit11
– ident: ref147/cit147
  doi: 10.1021/acsenergylett.7b00602
– ident: ref150/cit150
  doi: 10.1002/advs.201900090
– ident: ref97/cit97
  doi: 10.1021/ja408329q
– ident: ref122/cit122
  doi: 10.1038/s41557-018-0136-2
– ident: ref53/cit53
  doi: 10.1002/anie.201703066
– ident: ref58/cit58
  doi: 10.1002/smll.201501822
– ident: ref182/cit182
  doi: 10.1021/acscatal.7b03374
– ident: ref115/cit115
  doi: 10.1039/C5EE00751H
– ident: ref63/cit63
  doi: 10.1038/nmat4588
– ident: ref2/cit2
  doi: 10.1021/acs.est.7b01466
– ident: ref21/cit21
  doi: 10.1002/smll.201900578
– ident: ref20/cit20
  doi: 10.1126/science.1256815
– ident: ref132/cit132
  doi: 10.1002/smll.201905738
– ident: ref128/cit128
  doi: 10.1038/s41467-020-17199-0
– ident: ref206/cit206
  doi: 10.1039/C6TA05110C
– ident: ref61/cit61
  doi: 10.1021/cs300451q
– ident: ref134/cit134
  doi: 10.1021/acsami.7b06795
– ident: ref14/cit14
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: ref100/cit100
  doi: 10.1038/ncomms15113
– ident: ref110/cit110
  doi: 10.1002/anie.201812475
– ident: ref75/cit75
  doi: 10.1039/C5TA03766B
– ident: ref188/cit188
  doi: 10.1021/acssuschemeng.9b03906
– ident: ref192/cit192
  doi: 10.1126/science.1257443
– ident: ref175/cit175
  doi: 10.1039/D0EE01706J
– ident: ref94/cit94
  doi: 10.1080/15583724.2017.1309662
– ident: ref205/cit205
  doi: 10.1016/j.nanoen.2016.08.065
– ident: ref177/cit177
  doi: 10.1021/acscatal.0c04396
– ident: ref68/cit68
  doi: 10.1038/nmat3439
– ident: ref64/cit64
  doi: 10.1002/aenm.201702779
– ident: ref88/cit88
  doi: 10.1021/jacs.6b05940
– ident: ref98/cit98
  doi: 10.1002/aenm.201600116
– ident: ref170/cit170
  doi: 10.1016/j.apmt.2018.01.006
– ident: ref136/cit136
  doi: 10.1016/j.jallcom.2021.159066
– ident: ref16/cit16
  doi: 10.1021/acs.langmuir.7b03851
– ident: ref29/cit29
  doi: 10.1038/ncomms3995
– ident: ref41/cit41
  doi: 10.1038/ncomms7293
– ident: ref52/cit52
  doi: 10.1038/nmat3700
– ident: ref72/cit72
  doi: 10.1038/nmat4660
– ident: ref78/cit78
  doi: 10.1021/acscatal.6b01942
– ident: ref176/cit176
  doi: 10.1021/acsenergylett.0c00305
– ident: ref199/cit199
  doi: 10.1021/jacs.9b02501
– ident: ref93/cit93
  doi: 10.1016/S0010-8545(01)00392-7
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.44.3955
– ident: ref198/cit198
  doi: 10.1002/aenm.201801357
– ident: ref193/cit193
  doi: 10.1016/j.chempr.2017.12.019
– ident: ref200/cit200
  doi: 10.1021/acsami.9b07705
– ident: ref43/cit43
  doi: 10.1002/smll.201800640
– ident: ref23/cit23
  doi: 10.1002/chem.201801018
– ident: ref155/cit155
  doi: 10.1002/smll.201805511
– ident: ref17/cit17
  doi: 10.1016/j.apmt.2016.02.001
– ident: ref13/cit13
  doi: 10.1038/nmat1752
– ident: ref57/cit57
  doi: 10.1021/acsnano.8b07744
– ident: ref62/cit62
  doi: 10.1021/acsnano.5b05652
– ident: ref55/cit55
  doi: 10.1002/adma.201803477
– ident: ref44/cit44
  doi: 10.1002/adfm.201102111
– ident: ref50/cit50
  doi: 10.1021/ja404523s
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.98.184513
– ident: ref83/cit83
  doi: 10.1021/acscatal.6b02663
– ident: ref108/cit108
  doi: 10.1021/jacs.9b12113
– ident: ref130/cit130
  doi: 10.1039/C8CC00766G
– ident: ref165/cit165
  doi: 10.1021/acscatal.6b01211
– ident: ref86/cit86
  doi: 10.1002/adma.201304759
– ident: ref125/cit125
  doi: 10.1021/acsenergylett.7b00111
– ident: ref153/cit153
  doi: 10.1038/s41467-019-12997-7
– ident: ref172/cit172
  doi: 10.1016/S0022-0728(77)80363-X
– ident: ref34/cit34
  doi: 10.1126/science.aad2114
– ident: ref161/cit161
  doi: 10.1126/science.1141483
– ident: ref184/cit184
  doi: 10.1021/acs.accounts.8b00002
– ident: ref191/cit191
  doi: 10.1021/acsami.8b19251
– ident: ref107/cit107
  doi: 10.1021/jacs.8b10016
– ident: ref112/cit112
  doi: 10.1038/s41467-019-09269-9
– volume-title: Electrochemical Methods Fundamentals and Applications
  year: 2001
  ident: ref10/cit10
– ident: ref114/cit114
  doi: 10.1039/C4CY01162G
– ident: ref179/cit179
  doi: 10.1021/nl403620g
– ident: ref32/cit32
  doi: 10.1021/acs.jpcc.6b01838
– ident: ref113/cit113
  doi: 10.1021/acscatal.6b02076
– ident: ref12/cit12
  doi: 10.1016/S0013-4686(02)00329-8
– ident: ref89/cit89
  doi: 10.1039/c4ta01004c
– ident: ref102/cit102
  doi: 10.1021/acs.nanolett.5b04331
– ident: ref151/cit151
  doi: 10.1002/adfm.201809151
– ident: ref139/cit139
  doi: 10.1002/adfm.202000551
– ident: ref66/cit66
  doi: 10.1021/acs.chemmater.5b04815
– ident: ref91/cit91
  doi: 10.1002/adfm.201901958
– ident: ref123/cit123
  doi: 10.1021/cs501970w
– ident: ref77/cit77
  doi: 10.1039/C4TA04858J
– ident: ref149/cit149
  doi: 10.1021/acs.accounts.0c00127
– ident: ref82/cit82
  doi: 10.1021/nl400258t
– ident: ref166/cit166
  doi: 10.1039/C9CY01901D
– ident: ref42/cit42
  doi: 10.1002/adma.201807764
– ident: ref85/cit85
  doi: 10.1021/ja201269b
– ident: ref59/cit59
  doi: 10.1039/C1SC00117E
– ident: ref142/cit142
  doi: 10.1016/j.joule.2017.07.011
– ident: ref28/cit28
  doi: 10.1039/C6CC09952A
– ident: ref92/cit92
  doi: 10.1021/nl404444k
– ident: ref131/cit131
  doi: 10.1021/acscatal.8b00783
– ident: ref103/cit103
  doi: 10.1021/acsnano.9b05226
– ident: ref141/cit141
  doi: 10.1021/acsnano.8b00942
– ident: ref4/cit4
  doi: 10.1021/ja0504690
– ident: ref74/cit74
  doi: 10.1021/jacs.6b03714
– ident: ref135/cit135
  doi: 10.1039/C6NR02803A
– ident: ref163/cit163
  doi: 10.1126/science.aad4998
– ident: ref178/cit178
  doi: 10.1039/C9TA02801C
– ident: ref204/cit204
  doi: 10.1021/nn503027k
– ident: ref96/cit96
  doi: 10.1021/acs.nanolett.5b00388
– ident: ref138/cit138
  doi: 10.1002/smll.202002212
– ident: ref33/cit33
  doi: 10.1021/nl201874w
– ident: ref19/cit19
  doi: 10.1038/nchem.1589
– ident: ref109/cit109
  doi: 10.1021/acsnano.9b01583
– ident: ref80/cit80
  doi: 10.1002/adfm.201300318
– ident: ref36/cit36
  doi: 10.1002/anie.201909698
– ident: ref159/cit159
  doi: 10.1039/C9TA00545E
– ident: ref157/cit157
  doi: 10.1016/j.ijhydene.2020.03.184
– ident: ref27/cit27
  doi: 10.1038/s41557-018-0035-6
– ident: ref40/cit40
  doi: 10.1002/adma.201701486
– ident: ref117/cit117
  doi: 10.1021/jacs.7b08881
– ident: ref160/cit160
  doi: 10.1039/D0TA00897D
– ident: ref189/cit189
  doi: 10.1039/C8CY02532K
– ident: ref46/cit46
  doi: 10.1038/s41467-019-13486-7
– ident: ref71/cit71
  doi: 10.1021/acsnano.9b07324
– ident: ref99/cit99
  doi: 10.1002/aenm.201902107
– ident: ref3/cit3
  doi: 10.1038/natrevmats.2017.33
– ident: ref111/cit111
  doi: 10.1021/acs.chemmater.6b01395
– ident: ref148/cit148
  doi: 10.1002/smll.201701519
– ident: ref116/cit116
  doi: 10.1021/jp2076325
– ident: ref127/cit127
  doi: 10.1038/s41467-019-09210-0
– ident: ref140/cit140
  doi: 10.1016/j.nanoen.2017.05.011
– ident: ref183/cit183
  doi: 10.1039/C9CS00906J
– ident: ref104/cit104
  doi: 10.1021/acssuschemeng.8b06717
– ident: ref8/cit8
  doi: 10.1016/j.susc.2015.01.019
– ident: ref76/cit76
  doi: 10.1039/C4CC06480A
– ident: ref87/cit87
  doi: 10.1038/ncomms8493
– ident: ref143/cit143
  doi: 10.1038/ncomms6982
SSID ssj0057876
Score 2.7082908
SecondaryResourceType review_article
Snippet MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11014
Title Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts
URI http://dx.doi.org/10.1021/acsnano.1c01879
https://www.proquest.com/docview/2551210389
Volume 15
WOSCitedRecordID wos000679406500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgcIADb8R4TEHiwCXQJmvTHKcJxAEG4qXdqjRJJSRo0Vom7d_jdN3GQEhwb6rI-Wp_rp3PACfIAExkpEc960W0rVJLk7YKqBFOHQ1jRFip8z9fi14v6vfl3Uws-nsFn_nnSheZyvIzX7v5cXIRlhiSXAfmTvdh4nQd7sJxARkTZGQRUxWfHy9wYUgX82Fo3gtXoeVy_R-b2oC1mj-SzvjAN2HBZluw-kVVcBtu73Nl3tQ7UZkhtUvLM1JWDbLENXbQu9l1AXKTPzByNTKDHLFELoY1FknX_dgZFWWxA0-XF4_dK1rPTaAKE4CShqGUNrVSc4WklMkk8LiSOlWSt21kWKC5n5iApYIlQeqlXAuDtCjkKhEGKRXfhUaWZ3YPiAklMiYmfExl29Y4NS-lGLc8jHykcqoJJ2iKuMZ9EVclbebHtX3i2j5NOJtYO9a19rgbgfH6-4LT6YL3sezG748eT44vxk_D1TtUZvOPIsZsycmjISXb_9s2D2CFuZYVT1AmDqFRDj7sESzrYflSDFqwKPpRq4LdJ3Q90fc
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqD3-K3EfbgS2abrB95lDGZOKe4Kb6VtElB0Has3WD_vZeumw4Z6GtJwnG53P2ud_kFoIoIQPlKWNTSlk_rMtY0rEuHKs-wo2GMcAt2_te21-n4b2_iaQms6V0YFCLDlbKiiP_NLmBf47dEJmnNjswzcmIZVhwMrsaybxrdqe815udO6siYJyOYmJH5_FrARKMom49G8864iDC3W_-XbRs2SzRJbibbvwNLOtmFjR8cg3vw-JxK9Sn7RCaKlA4uTUhetMsS0-ZBn74vD5CHtMtIa6wGKVoWaY5KyyQN85tnnOXZPrzcNnuNFi1fUaAS04Gcuq4QOtYi4hIhKhOhY3EpolgKXte-Yk7E7VA5LPZY6MRWzCNPIUhyuQw9hQCLH0AlSRN9CES5AvET82xMbOtaGW4vKRnX3PVtBHbyCKqoiqA8BVlQFLiZHZT6CUr9HEFtqvQgKpnIzYMYH4snXM0m9CckHIuHXk53McCDYqofMtHpMAswdzJkaQjQjv8m5gWstXoP7aB917k_gXVmmlksjzLvFCr5YKjPYDUa5e_Z4LywwS9zdNl1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46RfTBuzivEfbgS7RN1ksex9yYOOdwKnsraZOCoO1Yu8H-vSddNh0yEF9LE8Lpd3K-05PzBaEKMADpS24RS1k-qYpYkbAqHCI9rY4GMcIt1Pnf2l6n4_f7vGuawnQvDCwig5myooivvXogY6MwYN_C80Qk6Y0d6avk-CpacyCca3TX6r3Z_qsh6E5ryZArA6GYC_r8mkBHpChbjEiLG3IRZZo7_1vfLto2rBLXpjDYQysq2UdbP7QGD9DTcyrkpxhgkUhsNro0wXlxbBbr4x6k-91EgB_THsWtiRymgDDcGBuE4rr-3TPJ8uwQvTYbL_UWMbcpEAFpQU5cl3MVKx4xAVSV8tCxmOBRLDirKl9SJ2J2KB0aezR0YitmkSfBui4ToSeBaLEjVErSRB0jLF0OPIp6NiS4VSW1xpcQlCnm-jYQPFFGFTBFYLwhC4pCN7UDY5_A2KeMbmaGDyKjSK4vxvhYPuB6PmAwFeNY_urV7EsG4DC6CiISlY6yAHIoLZoGRO3kb8u8RBvdu2bQvu88nKJNqs-0WB6h3hkq5cOROkfr0Th_z4YXBQy_AI1n2-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roadmap+and+Direction+toward+High-Performance+MoS2+Hydrogen+Evolution+Catalysts&rft.jtitle=ACS+nano&rft.au=Cao%2C+Yang&rft.date=2021-07-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=7&rft.spage=11014&rft.epage=11039&rft_id=info:doi/10.1021%2Facsnano.1c01879&rft.externalDocID=e41434261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon