Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts
MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the...
Uloženo v:
| Vydáno v: | ACS nano Ročník 15; číslo 7; s. 11014 - 11039 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Chemical Society
27.07.2021
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development. |
|---|---|
| AbstractList | MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development. MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development. |
| Author | Cao, Yang |
| AuthorAffiliation | Department of Energy and Resources Engineering, College of Engineering |
| AuthorAffiliation_xml | – name: Department of Energy and Resources Engineering, College of Engineering |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-5251-8747 surname: Cao fullname: Cao, Yang email: caoyangchem@pku.edu.cn |
| BookMark | eNp9kM9LwzAUgINMcJuevfYoSLf8aNrmKHM6YTLxB3grr2kyO7pkJqmy_97ODQ-CnvIg3_d4fAPUM9YohM4JHhFMyRikN2DsiEhM8kwcoT4RLI1xnr72fmZOTtDA-xXGPMuztI8WjxaqNWwiMFV0XTslQ21NFOwnuCqa1cu3-EE5bd0ajFTRvX2i0WxbObtUJpp-2Kb95icQoNn64E_RsYbGq7PDO0QvN9PnySyeL27vJlfzGBhOQ5ymQiithGSQk5KKkmMGQmoQLFF5RblkpKw41RktucaayaxKkyRlUGYV4Qkboov93o2z763yoVjXXqqmAaNs6wvKOaEEs1x0KN-j0lnvndKFrAPszg4O6qYguNgFLA4Bi0PAzhv_8jauXoPb_mNc7o3uo1jZ1pkuwZ_0Fx2hhms |
| CitedBy_id | crossref_primary_10_1021_acs_inorgchem_5c02517 crossref_primary_10_1016_j_diamond_2023_110342 crossref_primary_10_3390_nano13030478 crossref_primary_10_3390_cryst14080673 crossref_primary_10_3390_mi15030349 crossref_primary_10_1007_s12274_022_4507_z crossref_primary_10_1016_j_molliq_2025_128522 crossref_primary_10_1016_j_catcom_2023_106693 crossref_primary_10_1016_j_ijhydene_2023_10_103 crossref_primary_10_1039_D3RA07984H crossref_primary_10_1007_s11426_022_1287_4 crossref_primary_10_1016_j_apcatb_2022_121458 crossref_primary_10_1016_j_chempr_2024_04_011 crossref_primary_10_1016_j_ijhydene_2024_01_027 crossref_primary_10_1016_j_jechem_2023_12_014 crossref_primary_10_1021_jacs_4c00781 crossref_primary_10_1016_j_fuel_2025_136208 crossref_primary_10_1016_j_triboint_2022_107760 crossref_primary_10_1038_s41929_024_01148_x crossref_primary_10_1016_j_mtener_2023_101373 crossref_primary_10_1016_j_ijhydene_2022_06_198 crossref_primary_10_1016_j_ijhydene_2022_11_309 crossref_primary_10_1039_D4NR05278A crossref_primary_10_1007_s42823_024_00724_2 crossref_primary_10_1016_j_mtsust_2025_101194 crossref_primary_10_1021_acssuschemeng_5c03481 crossref_primary_10_1002_adma_202419790 crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1002_advs_202408869 crossref_primary_10_1016_j_micrna_2023_207613 crossref_primary_10_1002_adma_202314031 crossref_primary_10_1021_jacs_5c03556 crossref_primary_10_1016_j_ijhydene_2023_07_021 crossref_primary_10_1007_s11581_024_05544_y crossref_primary_10_1016_j_apsusc_2025_164401 crossref_primary_10_1016_j_electacta_2022_141249 crossref_primary_10_1007_s11172_024_4656_1 crossref_primary_10_3390_gels10090558 crossref_primary_10_1002_smll_202505185 crossref_primary_10_1016_j_jelechem_2022_116448 crossref_primary_10_1016_j_elecom_2023_107563 crossref_primary_10_1063_5_0191316 crossref_primary_10_1016_j_ccr_2024_215715 crossref_primary_10_1016_j_susc_2023_122395 crossref_primary_10_1016_j_apsusc_2022_153893 crossref_primary_10_1016_j_jcis_2023_06_039 crossref_primary_10_1002_smtd_202400572 crossref_primary_10_1002_smll_202308672 crossref_primary_10_1016_j_electacta_2022_141596 crossref_primary_10_1016_j_mtcomm_2023_106609 crossref_primary_10_1002_smll_202403089 crossref_primary_10_3390_sym15040801 crossref_primary_10_1016_j_cattod_2024_115020 crossref_primary_10_1039_D4NH00005F crossref_primary_10_3390_catal14010050 crossref_primary_10_1002_smll_202203173 crossref_primary_10_1039_D5NH00111K crossref_primary_10_1016_j_apcatb_2022_121302 crossref_primary_10_1016_j_cclet_2025_111650 crossref_primary_10_1016_j_cej_2025_164783 crossref_primary_10_1016_j_jpowsour_2025_238148 crossref_primary_10_1039_D1NR07438E crossref_primary_10_1002_aenm_202103301 crossref_primary_10_1016_j_ijhydene_2022_11_107 crossref_primary_10_1016_j_fuel_2025_136817 crossref_primary_10_1007_s10971_025_06696_7 crossref_primary_10_1016_j_ijhydene_2025_150944 crossref_primary_10_1016_j_ijhydene_2024_04_311 crossref_primary_10_1016_j_jelechem_2025_119099 crossref_primary_10_1021_acs_iecr_5c00532 crossref_primary_10_1002_ece2_73 crossref_primary_10_1021_acs_jpcc_5c02707 crossref_primary_10_1002_adsu_202300017 crossref_primary_10_1007_s11814_025_00515_z crossref_primary_10_1016_j_cej_2023_144373 crossref_primary_10_1016_j_cplett_2024_141504 crossref_primary_10_1039_D5TA03626G crossref_primary_10_1063_5_0230967 crossref_primary_10_1007_s11426_022_1545_0 crossref_primary_10_1007_s12274_023_5629_7 crossref_primary_10_1016_j_seppur_2025_132569 crossref_primary_10_1088_1361_665X_ad78cd crossref_primary_10_1016_j_jtice_2022_104638 crossref_primary_10_1016_j_mtchem_2023_101747 crossref_primary_10_1002_cssc_202400678 crossref_primary_10_1002_smll_202508200 crossref_primary_10_1007_s40820_023_01182_7 crossref_primary_10_1016_j_ijhydene_2024_12_388 crossref_primary_10_1039_D5CC01856K crossref_primary_10_1002_aenm_202300145 crossref_primary_10_1002_cplu_202400278 crossref_primary_10_1016_j_cclet_2022_03_071 crossref_primary_10_1002_adma_202401880 crossref_primary_10_1016_j_jallcom_2023_169831 crossref_primary_10_1016_j_apcatb_2023_122445 crossref_primary_10_7498_aps_74_20250410 crossref_primary_10_1007_s12034_023_02891_w crossref_primary_10_1016_j_mtener_2023_101487 crossref_primary_10_1002_slct_202405247 crossref_primary_10_1016_j_jcat_2023_07_002 crossref_primary_10_1016_j_jallcom_2025_180642 crossref_primary_10_1039_D2CY01749K crossref_primary_10_1016_j_apsusc_2022_155354 crossref_primary_10_1039_D4SC07309F crossref_primary_10_1016_j_cej_2025_162907 crossref_primary_10_1016_j_electacta_2024_143774 crossref_primary_10_1016_j_ijhydene_2024_04_218 crossref_primary_10_1039_D4QI01853B crossref_primary_10_1002_smtd_202301771 crossref_primary_10_1021_acselectrochem_4c00178 crossref_primary_10_1002_adfm_202413720 crossref_primary_10_1142_S0217984924502002 crossref_primary_10_1002_smll_202305888 crossref_primary_10_1021_accountsmr_4c00306 crossref_primary_10_1016_j_ijhydene_2022_08_083 crossref_primary_10_1016_j_ijhydene_2025_01_336 crossref_primary_10_1016_j_fuel_2024_133743 crossref_primary_10_1016_j_cej_2023_147725 crossref_primary_10_1007_s10562_025_04957_2 crossref_primary_10_1088_1361_648X_ad53b5 crossref_primary_10_1016_j_jtice_2023_105014 crossref_primary_10_1111_jace_19693 crossref_primary_10_1016_j_jpowsour_2022_232519 crossref_primary_10_1016_j_apsusc_2022_156309 crossref_primary_10_54691_3x4z9n69 crossref_primary_10_1016_j_nanoen_2023_108681 crossref_primary_10_1002_celc_202200420 crossref_primary_10_1016_j_ijhydene_2024_05_203 crossref_primary_10_1016_j_apsusc_2024_160704 crossref_primary_10_1002_smtd_202401486 crossref_primary_10_1016_j_apsusc_2023_157256 crossref_primary_10_1007_s43207_024_00429_2 crossref_primary_10_53941_rset_2025_100007 crossref_primary_10_1002_ejic_202300492 crossref_primary_10_3390_membranes12080818 crossref_primary_10_1016_j_cej_2023_141858 crossref_primary_10_1016_j_microc_2024_111639 crossref_primary_10_1016_j_jcat_2025_116178 crossref_primary_10_1002_advs_202500226 crossref_primary_10_1016_j_cej_2024_153442 crossref_primary_10_1039_D3MH00677H crossref_primary_10_1002_cey2_521 crossref_primary_10_1007_s10904_025_03720_9 crossref_primary_10_3390_cryst13081271 crossref_primary_10_1038_s41929_022_00781_8 crossref_primary_10_1016_j_molstruc_2025_141946 crossref_primary_10_1039_D5CP02584B crossref_primary_10_1002_smll_202204557 crossref_primary_10_1016_j_matchemphys_2024_129234 crossref_primary_10_1016_j_cej_2023_145524 crossref_primary_10_1016_j_ijhydene_2023_05_290 crossref_primary_10_1016_j_mtsust_2023_100346 crossref_primary_10_1007_s42114_025_01289_y crossref_primary_10_1039_D3RA04738E crossref_primary_10_1021_jacs_4c00948 crossref_primary_10_1038_s41929_024_01171_y crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_3390_atmos14101486 crossref_primary_10_1002_cey2_656 crossref_primary_10_1016_j_electacta_2023_143670 crossref_primary_10_1016_j_jallcom_2022_167948 crossref_primary_10_1002_pssr_202300169 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1039_D4NR00876F crossref_primary_10_1016_j_apsusc_2024_161335 crossref_primary_10_1021_acs_nanolett_5c00919 crossref_primary_10_1016_S1872_2067_23_64469_9 crossref_primary_10_1088_1361_6528_acd854 crossref_primary_10_1016_j_cej_2022_134963 crossref_primary_10_1016_S1872_2067_24_60105_1 crossref_primary_10_1039_D5SE00541H crossref_primary_10_3390_app15031629 crossref_primary_10_1002_adfm_202316266 crossref_primary_10_1088_1402_4896_adb2c2 crossref_primary_10_1016_j_electacta_2023_142191 crossref_primary_10_1038_s41598_024_67252_x crossref_primary_10_1016_j_jallcom_2023_169655 crossref_primary_10_1002_chem_202501473 crossref_primary_10_1016_j_cej_2023_141939 crossref_primary_10_1016_j_ijhydene_2022_10_140 crossref_primary_10_1016_j_ijhydene_2023_12_159 crossref_primary_10_1016_j_jechem_2022_07_020 crossref_primary_10_1016_j_ijhydene_2025_04_390 crossref_primary_10_1016_j_apcatb_2023_123399 crossref_primary_10_1021_prechem_3c00033 crossref_primary_10_1002_adfm_202206163 crossref_primary_10_1016_j_carbon_2024_119614 crossref_primary_10_1016_j_jcis_2025_138444 crossref_primary_10_1016_j_jechem_2022_02_029 crossref_primary_10_1002_cphc_202300477 crossref_primary_10_1016_j_ccr_2025_216682 crossref_primary_10_1039_D5NR01584G crossref_primary_10_1002_adma_202500285 crossref_primary_10_1002_aoc_70396 crossref_primary_10_1039_D3NR05458F crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1016_j_ijhydene_2025_150671 crossref_primary_10_3762_bjnano_16_104 crossref_primary_10_1016_j_ijhydene_2024_07_267 crossref_primary_10_1002_smll_202401537 crossref_primary_10_1016_j_jece_2023_111663 crossref_primary_10_1039_D2QM00931E crossref_primary_10_1088_2043_6262_ad9ff1 crossref_primary_10_1039_D5TC00767D crossref_primary_10_1002_elan_202400239 crossref_primary_10_1016_j_jelechem_2024_118342 crossref_primary_10_1016_j_catcom_2022_106427 crossref_primary_10_1016_j_apcatb_2023_123015 crossref_primary_10_1016_j_fuel_2025_134573 crossref_primary_10_1038_s41467_024_44717_1 crossref_primary_10_1016_j_jallcom_2024_177692 crossref_primary_10_1016_j_electacta_2023_142780 crossref_primary_10_1016_j_matchemphys_2024_129784 crossref_primary_10_3390_molecules29112551 crossref_primary_10_1016_j_cherd_2022_07_026 crossref_primary_10_1002_advs_202407061 crossref_primary_10_1016_j_ijhydene_2024_02_109 crossref_primary_10_1016_j_carbon_2022_11_029 crossref_primary_10_5757_ASCT_2023_32_2_48 crossref_primary_10_3390_molecules29020523 crossref_primary_10_1007_s10008_024_06111_1 crossref_primary_10_1002_aelm_202400748 crossref_primary_10_1002_adfm_202504278 crossref_primary_10_1039_D1SE01690C crossref_primary_10_1088_1402_4896_ac8648 crossref_primary_10_1016_j_est_2023_107614 crossref_primary_10_1021_acsaem_5c00619 |
| Cites_doi | 10.1038/nphys4188 10.1021/ja983043c 10.1039/C7TA03172F 10.1002/adfm.201702300 10.1002/aenm.201602086 10.1002/anie.201803543 10.1039/C6TA09612C 10.1021/acsnano.6b06392 10.1021/nl403036h 10.1038/s41563-020-0788-3 10.1021/acsnano.9b07763 10.1002/anie.201600686 10.1021/jacs.8b12133 10.1002/cssc.201901811 10.1002/adma.201707105 10.1021/cs500923c 10.1080/01614948909351347 10.1021/jacs.6b07127 10.1002/asia.201800359 10.1021/acsnano.5b00786 10.1021/acsami.9b11708 10.1039/c3cc45936e 10.1038/s41467-019-08877-9 10.1038/srep05348 10.1039/C9TC02256B 10.1073/pnas.1508075112 10.1038/nnano.2014.64 10.1002/cctc.201402128 10.1021/ja510328m 10.1002/cctc.201801541 10.1021/nl403661s 10.1039/C5TA02198G 10.1002/adfm.201604943 10.1021/acsami.7b10230 10.1021/acs.inorgchem.9b01814 10.1039/C6NR06836G 10.1021/acscatal.7b02885 10.1039/C5NR08553E 10.1021/acscatal.0c00960 10.1007/s40820-019-0277-x 10.1038/nmat4465 10.1021/acsami.5b08420 10.1038/35104634 10.1021/acsenergylett.8b01840 10.1021/acs.chemmater.7b04428 10.1016/0043-1648(72)90124-X 10.1021/acscatal.8b00883 10.1016/j.electacta.2019.135454 10.1016/j.mattod.2016.10.004 10.1021/jacs.0c04231 10.1021/cr1002326 10.1021/acsaem.8b00010 10.1021/acsami.6b08740 10.1021/acsami.5b10252 10.1021/acsami.5b02586 10.1002/adma.201503270 10.1039/D0TA08679G 10.1007/s11467-018-0812-0 10.1002/adfm.201908520 10.1021/acscatal.6b01848 10.1016/j.mattod.2019.12.003 10.1021/acs.nanolett.8b04104 10.1021/acs.chemmater.5b03997 10.1021/acsami.8b07163 10.1002/adma.201504866 10.1039/C7TA02577G 10.1021/jacs.0c09527 10.1021/acsnano.9b01266 10.1039/C8TA05033C 10.1002/adfm.201701825 10.1016/j.jpowsour.2016.11.041 10.1016/j.nanoen.2018.04.067 10.1039/D0TA02538K 10.1021/acscatal.7b00876 10.1021/acsenergylett.7b00602 10.1002/advs.201900090 10.1021/ja408329q 10.1038/s41557-018-0136-2 10.1002/anie.201703066 10.1002/smll.201501822 10.1021/acscatal.7b03374 10.1039/C5EE00751H 10.1038/nmat4588 10.1021/acs.est.7b01466 10.1002/smll.201900578 10.1126/science.1256815 10.1002/smll.201905738 10.1038/s41467-020-17199-0 10.1039/C6TA05110C 10.1021/cs300451q 10.1021/acsami.7b06795 10.1016/j.ijhydene.2013.01.151 10.1038/ncomms15113 10.1002/anie.201812475 10.1039/C5TA03766B 10.1021/acssuschemeng.9b03906 10.1126/science.1257443 10.1039/D0EE01706J 10.1080/15583724.2017.1309662 10.1016/j.nanoen.2016.08.065 10.1021/acscatal.0c04396 10.1038/nmat3439 10.1002/aenm.201702779 10.1021/jacs.6b05940 10.1002/aenm.201600116 10.1016/j.apmt.2018.01.006 10.1016/j.jallcom.2021.159066 10.1021/acs.langmuir.7b03851 10.1038/ncomms3995 10.1038/ncomms7293 10.1038/nmat3700 10.1038/nmat4660 10.1021/acscatal.6b01942 10.1021/acsenergylett.0c00305 10.1021/jacs.9b02501 10.1016/S0010-8545(01)00392-7 10.1103/PhysRevB.44.3955 10.1002/aenm.201801357 10.1016/j.chempr.2017.12.019 10.1021/acsami.9b07705 10.1002/smll.201800640 10.1002/chem.201801018 10.1002/smll.201805511 10.1016/j.apmt.2016.02.001 10.1038/nmat1752 10.1021/acsnano.8b07744 10.1021/acsnano.5b05652 10.1002/adma.201803477 10.1002/adfm.201102111 10.1021/ja404523s 10.1103/PhysRevB.98.184513 10.1021/acscatal.6b02663 10.1021/jacs.9b12113 10.1039/C8CC00766G 10.1021/acscatal.6b01211 10.1002/adma.201304759 10.1021/acsenergylett.7b00111 10.1038/s41467-019-12997-7 10.1016/S0022-0728(77)80363-X 10.1126/science.aad2114 10.1126/science.1141483 10.1021/acs.accounts.8b00002 10.1021/acsami.8b19251 10.1021/jacs.8b10016 10.1038/s41467-019-09269-9 10.1039/C4CY01162G 10.1021/nl403620g 10.1021/acs.jpcc.6b01838 10.1021/acscatal.6b02076 10.1016/S0013-4686(02)00329-8 10.1039/c4ta01004c 10.1021/acs.nanolett.5b04331 10.1002/adfm.201809151 10.1002/adfm.202000551 10.1021/acs.chemmater.5b04815 10.1002/adfm.201901958 10.1021/cs501970w 10.1039/C4TA04858J 10.1021/acs.accounts.0c00127 10.1021/nl400258t 10.1039/C9CY01901D 10.1002/adma.201807764 10.1021/ja201269b 10.1039/C1SC00117E 10.1016/j.joule.2017.07.011 10.1039/C6CC09952A 10.1021/nl404444k 10.1021/acscatal.8b00783 10.1021/acsnano.9b05226 10.1021/acsnano.8b00942 10.1021/ja0504690 10.1021/jacs.6b03714 10.1039/C6NR02803A 10.1126/science.aad4998 10.1039/C9TA02801C 10.1021/nn503027k 10.1021/acs.nanolett.5b00388 10.1002/smll.202002212 10.1021/nl201874w 10.1038/nchem.1589 10.1021/acsnano.9b01583 10.1002/adfm.201300318 10.1002/anie.201909698 10.1039/C9TA00545E 10.1016/j.ijhydene.2020.03.184 10.1038/s41557-018-0035-6 10.1002/adma.201701486 10.1021/jacs.7b08881 10.1039/D0TA00897D 10.1039/C8CY02532K 10.1038/s41467-019-13486-7 10.1021/acsnano.9b07324 10.1002/aenm.201902107 10.1038/natrevmats.2017.33 10.1021/acs.chemmater.6b01395 10.1002/smll.201701519 10.1021/jp2076325 10.1038/s41467-019-09210-0 10.1016/j.nanoen.2017.05.011 10.1039/C9CS00906J 10.1021/acssuschemeng.8b06717 10.1016/j.susc.2015.01.019 10.1039/C4CC06480A 10.1038/ncomms8493 10.1038/ncomms6982 |
| ContentType | Journal Article |
| Copyright | 2021 American Chemical Society |
| Copyright_xml | – notice: 2021 American Chemical Society |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1021/acsnano.1c01879 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 11039 |
| ExternalDocumentID | 10_1021_acsnano_1c01879 e41434261 |
| GroupedDBID | - .K2 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ 7X8 |
| ID | FETCH-LOGICAL-a306t-6699efe9c3a81b29b503a9cfa934e8d25c31bd52f72b5f0f3c7d64463ab7d1543 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 309 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679406500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Fri Jul 11 06:55:31 EDT 2025 Tue Nov 18 22:25:25 EST 2025 Sat Nov 29 05:41:35 EST 2025 Thu Jul 29 03:24:45 EDT 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | 2D catalyst HER Pt-like activity MoS2 mechanism characterization electrocatalysis structure |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a306t-6699efe9c3a81b29b503a9cfa934e8d25c31bd52f72b5f0f3c7d64463ab7d1543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5251-8747 |
| PQID | 2551210389 |
| PQPubID | 23479 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_2551210389 crossref_citationtrail_10_1021_acsnano_1c01879 crossref_primary_10_1021_acsnano_1c01879 acs_journals_10_1021_acsnano_1c01879 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-27 |
| PublicationDateYYYYMMDD | 2021-07-27 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2021 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 Allen J. B. (ref10/cit10) 2001 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 Eliezer G. (ref11/cit11) 2011 ref31/cit31 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
| References_xml | – ident: ref18/cit18 doi: 10.1038/nphys4188 – ident: ref24/cit24 doi: 10.1021/ja983043c – ident: ref7/cit7 doi: 10.1039/C7TA03172F – ident: ref156/cit156 doi: 10.1002/adfm.201702300 – ident: ref121/cit121 doi: 10.1002/aenm.201602086 – ident: ref187/cit187 doi: 10.1002/anie.201803543 – ident: ref79/cit79 doi: 10.1039/C6TA09612C – ident: ref197/cit197 doi: 10.1021/acsnano.6b06392 – ident: ref35/cit35 doi: 10.1021/nl403036h – ident: ref190/cit190 doi: 10.1038/s41563-020-0788-3 – ident: ref154/cit154 doi: 10.1021/acsnano.9b07763 – ident: ref144/cit144 doi: 10.1002/anie.201600686 – ident: ref25/cit25 doi: 10.1021/jacs.8b12133 – ident: ref37/cit37 doi: 10.1002/cssc.201901811 – ident: ref39/cit39 doi: 10.1002/adma.201707105 – ident: ref162/cit162 doi: 10.1021/cs500923c – ident: ref5/cit5 doi: 10.1080/01614948909351347 – ident: ref185/cit185 doi: 10.1021/jacs.6b07127 – ident: ref145/cit145 doi: 10.1002/asia.201800359 – ident: ref73/cit73 doi: 10.1021/acsnano.5b00786 – ident: ref167/cit167 doi: 10.1021/acsami.9b11708 – ident: ref30/cit30 doi: 10.1039/c3cc45936e – ident: ref129/cit129 doi: 10.1038/s41467-019-08877-9 – ident: ref207/cit207 doi: 10.1038/srep05348 – ident: ref105/cit105 doi: 10.1039/C9TC02256B – ident: ref194/cit194 doi: 10.1073/pnas.1508075112 – ident: ref22/cit22 doi: 10.1038/nnano.2014.64 – ident: ref195/cit195 doi: 10.1002/cctc.201402128 – ident: ref171/cit171 doi: 10.1021/ja510328m – ident: ref133/cit133 doi: 10.1002/cctc.201801541 – ident: ref51/cit51 doi: 10.1021/nl403661s – ident: ref67/cit67 doi: 10.1039/C5TA02198G – ident: ref126/cit126 doi: 10.1002/adfm.201604943 – ident: ref38/cit38 doi: 10.1021/acsami.7b10230 – ident: ref118/cit118 doi: 10.1021/acs.inorgchem.9b01814 – ident: ref65/cit65 doi: 10.1039/C6NR06836G – ident: ref137/cit137 doi: 10.1021/acscatal.7b02885 – ident: ref203/cit203 doi: 10.1039/C5NR08553E – ident: ref180/cit180 doi: 10.1021/acscatal.0c00960 – ident: ref48/cit48 doi: 10.1007/s40820-019-0277-x – ident: ref106/cit106 doi: 10.1038/nmat4465 – ident: ref119/cit119 doi: 10.1021/acsami.5b08420 – ident: ref1/cit1 doi: 10.1038/35104634 – ident: ref56/cit56 doi: 10.1021/acsenergylett.8b01840 – ident: ref196/cit196 doi: 10.1021/acs.chemmater.7b04428 – ident: ref15/cit15 doi: 10.1016/0043-1648(72)90124-X – ident: ref164/cit164 doi: 10.1021/acscatal.8b00883 – ident: ref60/cit60 doi: 10.1016/j.electacta.2019.135454 – ident: ref95/cit95 doi: 10.1016/j.mattod.2016.10.004 – ident: ref174/cit174 doi: 10.1021/jacs.0c04231 – ident: ref9/cit9 doi: 10.1021/cr1002326 – ident: ref84/cit84 doi: 10.1021/acsaem.8b00010 – ident: ref158/cit158 doi: 10.1021/acsami.6b08740 – ident: ref69/cit69 doi: 10.1021/acsami.5b10252 – ident: ref70/cit70 doi: 10.1021/acsami.5b02586 – ident: ref6/cit6 doi: 10.1002/adma.201503270 – ident: ref152/cit152 doi: 10.1039/D0TA08679G – ident: ref202/cit202 doi: 10.1007/s11467-018-0812-0 – ident: ref168/cit168 doi: 10.1002/adfm.201908520 – ident: ref45/cit45 doi: 10.1021/acscatal.6b01848 – ident: ref173/cit173 doi: 10.1016/j.mattod.2019.12.003 – ident: ref54/cit54 doi: 10.1021/acs.nanolett.8b04104 – ident: ref81/cit81 doi: 10.1021/acs.chemmater.5b03997 – ident: ref169/cit169 doi: 10.1021/acsami.8b07163 – ident: ref124/cit124 doi: 10.1002/adma.201504866 – ident: ref31/cit31 doi: 10.1039/C7TA02577G – ident: ref181/cit181 doi: 10.1021/jacs.0c09527 – ident: ref47/cit47 doi: 10.1021/acsnano.9b01266 – ident: ref146/cit146 doi: 10.1039/C8TA05033C – ident: ref101/cit101 doi: 10.1002/adfm.201701825 – ident: ref201/cit201 doi: 10.1016/j.jpowsour.2016.11.041 – ident: ref90/cit90 doi: 10.1016/j.nanoen.2018.04.067 – ident: ref120/cit120 doi: 10.1039/D0TA02538K – ident: ref186/cit186 doi: 10.1021/acscatal.7b00876 – volume-title: Physical Electrochemistry year: 2011 ident: ref11/cit11 – ident: ref147/cit147 doi: 10.1021/acsenergylett.7b00602 – ident: ref150/cit150 doi: 10.1002/advs.201900090 – ident: ref97/cit97 doi: 10.1021/ja408329q – ident: ref122/cit122 doi: 10.1038/s41557-018-0136-2 – ident: ref53/cit53 doi: 10.1002/anie.201703066 – ident: ref58/cit58 doi: 10.1002/smll.201501822 – ident: ref182/cit182 doi: 10.1021/acscatal.7b03374 – ident: ref115/cit115 doi: 10.1039/C5EE00751H – ident: ref63/cit63 doi: 10.1038/nmat4588 – ident: ref2/cit2 doi: 10.1021/acs.est.7b01466 – ident: ref21/cit21 doi: 10.1002/smll.201900578 – ident: ref20/cit20 doi: 10.1126/science.1256815 – ident: ref132/cit132 doi: 10.1002/smll.201905738 – ident: ref128/cit128 doi: 10.1038/s41467-020-17199-0 – ident: ref206/cit206 doi: 10.1039/C6TA05110C – ident: ref61/cit61 doi: 10.1021/cs300451q – ident: ref134/cit134 doi: 10.1021/acsami.7b06795 – ident: ref14/cit14 doi: 10.1016/j.ijhydene.2013.01.151 – ident: ref100/cit100 doi: 10.1038/ncomms15113 – ident: ref110/cit110 doi: 10.1002/anie.201812475 – ident: ref75/cit75 doi: 10.1039/C5TA03766B – ident: ref188/cit188 doi: 10.1021/acssuschemeng.9b03906 – ident: ref192/cit192 doi: 10.1126/science.1257443 – ident: ref175/cit175 doi: 10.1039/D0EE01706J – ident: ref94/cit94 doi: 10.1080/15583724.2017.1309662 – ident: ref205/cit205 doi: 10.1016/j.nanoen.2016.08.065 – ident: ref177/cit177 doi: 10.1021/acscatal.0c04396 – ident: ref68/cit68 doi: 10.1038/nmat3439 – ident: ref64/cit64 doi: 10.1002/aenm.201702779 – ident: ref88/cit88 doi: 10.1021/jacs.6b05940 – ident: ref98/cit98 doi: 10.1002/aenm.201600116 – ident: ref170/cit170 doi: 10.1016/j.apmt.2018.01.006 – ident: ref136/cit136 doi: 10.1016/j.jallcom.2021.159066 – ident: ref16/cit16 doi: 10.1021/acs.langmuir.7b03851 – ident: ref29/cit29 doi: 10.1038/ncomms3995 – ident: ref41/cit41 doi: 10.1038/ncomms7293 – ident: ref52/cit52 doi: 10.1038/nmat3700 – ident: ref72/cit72 doi: 10.1038/nmat4660 – ident: ref78/cit78 doi: 10.1021/acscatal.6b01942 – ident: ref176/cit176 doi: 10.1021/acsenergylett.0c00305 – ident: ref199/cit199 doi: 10.1021/jacs.9b02501 – ident: ref93/cit93 doi: 10.1016/S0010-8545(01)00392-7 – ident: ref49/cit49 doi: 10.1103/PhysRevB.44.3955 – ident: ref198/cit198 doi: 10.1002/aenm.201801357 – ident: ref193/cit193 doi: 10.1016/j.chempr.2017.12.019 – ident: ref200/cit200 doi: 10.1021/acsami.9b07705 – ident: ref43/cit43 doi: 10.1002/smll.201800640 – ident: ref23/cit23 doi: 10.1002/chem.201801018 – ident: ref155/cit155 doi: 10.1002/smll.201805511 – ident: ref17/cit17 doi: 10.1016/j.apmt.2016.02.001 – ident: ref13/cit13 doi: 10.1038/nmat1752 – ident: ref57/cit57 doi: 10.1021/acsnano.8b07744 – ident: ref62/cit62 doi: 10.1021/acsnano.5b05652 – ident: ref55/cit55 doi: 10.1002/adma.201803477 – ident: ref44/cit44 doi: 10.1002/adfm.201102111 – ident: ref50/cit50 doi: 10.1021/ja404523s – ident: ref26/cit26 doi: 10.1103/PhysRevB.98.184513 – ident: ref83/cit83 doi: 10.1021/acscatal.6b02663 – ident: ref108/cit108 doi: 10.1021/jacs.9b12113 – ident: ref130/cit130 doi: 10.1039/C8CC00766G – ident: ref165/cit165 doi: 10.1021/acscatal.6b01211 – ident: ref86/cit86 doi: 10.1002/adma.201304759 – ident: ref125/cit125 doi: 10.1021/acsenergylett.7b00111 – ident: ref153/cit153 doi: 10.1038/s41467-019-12997-7 – ident: ref172/cit172 doi: 10.1016/S0022-0728(77)80363-X – ident: ref34/cit34 doi: 10.1126/science.aad2114 – ident: ref161/cit161 doi: 10.1126/science.1141483 – ident: ref184/cit184 doi: 10.1021/acs.accounts.8b00002 – ident: ref191/cit191 doi: 10.1021/acsami.8b19251 – ident: ref107/cit107 doi: 10.1021/jacs.8b10016 – ident: ref112/cit112 doi: 10.1038/s41467-019-09269-9 – volume-title: Electrochemical Methods Fundamentals and Applications year: 2001 ident: ref10/cit10 – ident: ref114/cit114 doi: 10.1039/C4CY01162G – ident: ref179/cit179 doi: 10.1021/nl403620g – ident: ref32/cit32 doi: 10.1021/acs.jpcc.6b01838 – ident: ref113/cit113 doi: 10.1021/acscatal.6b02076 – ident: ref12/cit12 doi: 10.1016/S0013-4686(02)00329-8 – ident: ref89/cit89 doi: 10.1039/c4ta01004c – ident: ref102/cit102 doi: 10.1021/acs.nanolett.5b04331 – ident: ref151/cit151 doi: 10.1002/adfm.201809151 – ident: ref139/cit139 doi: 10.1002/adfm.202000551 – ident: ref66/cit66 doi: 10.1021/acs.chemmater.5b04815 – ident: ref91/cit91 doi: 10.1002/adfm.201901958 – ident: ref123/cit123 doi: 10.1021/cs501970w – ident: ref77/cit77 doi: 10.1039/C4TA04858J – ident: ref149/cit149 doi: 10.1021/acs.accounts.0c00127 – ident: ref82/cit82 doi: 10.1021/nl400258t – ident: ref166/cit166 doi: 10.1039/C9CY01901D – ident: ref42/cit42 doi: 10.1002/adma.201807764 – ident: ref85/cit85 doi: 10.1021/ja201269b – ident: ref59/cit59 doi: 10.1039/C1SC00117E – ident: ref142/cit142 doi: 10.1016/j.joule.2017.07.011 – ident: ref28/cit28 doi: 10.1039/C6CC09952A – ident: ref92/cit92 doi: 10.1021/nl404444k – ident: ref131/cit131 doi: 10.1021/acscatal.8b00783 – ident: ref103/cit103 doi: 10.1021/acsnano.9b05226 – ident: ref141/cit141 doi: 10.1021/acsnano.8b00942 – ident: ref4/cit4 doi: 10.1021/ja0504690 – ident: ref74/cit74 doi: 10.1021/jacs.6b03714 – ident: ref135/cit135 doi: 10.1039/C6NR02803A – ident: ref163/cit163 doi: 10.1126/science.aad4998 – ident: ref178/cit178 doi: 10.1039/C9TA02801C – ident: ref204/cit204 doi: 10.1021/nn503027k – ident: ref96/cit96 doi: 10.1021/acs.nanolett.5b00388 – ident: ref138/cit138 doi: 10.1002/smll.202002212 – ident: ref33/cit33 doi: 10.1021/nl201874w – ident: ref19/cit19 doi: 10.1038/nchem.1589 – ident: ref109/cit109 doi: 10.1021/acsnano.9b01583 – ident: ref80/cit80 doi: 10.1002/adfm.201300318 – ident: ref36/cit36 doi: 10.1002/anie.201909698 – ident: ref159/cit159 doi: 10.1039/C9TA00545E – ident: ref157/cit157 doi: 10.1016/j.ijhydene.2020.03.184 – ident: ref27/cit27 doi: 10.1038/s41557-018-0035-6 – ident: ref40/cit40 doi: 10.1002/adma.201701486 – ident: ref117/cit117 doi: 10.1021/jacs.7b08881 – ident: ref160/cit160 doi: 10.1039/D0TA00897D – ident: ref189/cit189 doi: 10.1039/C8CY02532K – ident: ref46/cit46 doi: 10.1038/s41467-019-13486-7 – ident: ref71/cit71 doi: 10.1021/acsnano.9b07324 – ident: ref99/cit99 doi: 10.1002/aenm.201902107 – ident: ref3/cit3 doi: 10.1038/natrevmats.2017.33 – ident: ref111/cit111 doi: 10.1021/acs.chemmater.6b01395 – ident: ref148/cit148 doi: 10.1002/smll.201701519 – ident: ref116/cit116 doi: 10.1021/jp2076325 – ident: ref127/cit127 doi: 10.1038/s41467-019-09210-0 – ident: ref140/cit140 doi: 10.1016/j.nanoen.2017.05.011 – ident: ref183/cit183 doi: 10.1039/C9CS00906J – ident: ref104/cit104 doi: 10.1021/acssuschemeng.8b06717 – ident: ref8/cit8 doi: 10.1016/j.susc.2015.01.019 – ident: ref76/cit76 doi: 10.1039/C4CC06480A – ident: ref87/cit87 doi: 10.1038/ncomms8493 – ident: ref143/cit143 doi: 10.1038/ncomms6982 |
| SSID | ssj0057876 |
| Score | 2.7082908 |
| SecondaryResourceType | review_article |
| Snippet | MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11014 |
| Title | Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts |
| URI | http://dx.doi.org/10.1021/acsnano.1c01879 https://www.proquest.com/docview/2551210389 |
| Volume | 15 |
| WOSCitedRecordID | wos000679406500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgcIADb8R4TEHiwCXQJmvTHKcJxAEG4qXdqjRJJSRo0Vom7d_jdN3GQEhwb6rI-Wp_rp3PACfIAExkpEc960W0rVJLk7YKqBFOHQ1jRFip8z9fi14v6vfl3Uws-nsFn_nnSheZyvIzX7v5cXIRlhiSXAfmTvdh4nQd7sJxARkTZGQRUxWfHy9wYUgX82Fo3gtXoeVy_R-b2oC1mj-SzvjAN2HBZluw-kVVcBtu73Nl3tQ7UZkhtUvLM1JWDbLENXbQu9l1AXKTPzByNTKDHLFELoY1FknX_dgZFWWxA0-XF4_dK1rPTaAKE4CShqGUNrVSc4WklMkk8LiSOlWSt21kWKC5n5iApYIlQeqlXAuDtCjkKhEGKRXfhUaWZ3YPiAklMiYmfExl29Y4NS-lGLc8jHykcqoJJ2iKuMZ9EVclbebHtX3i2j5NOJtYO9a19rgbgfH6-4LT6YL3sezG748eT44vxk_D1TtUZvOPIsZsycmjISXb_9s2D2CFuZYVT1AmDqFRDj7sESzrYflSDFqwKPpRq4LdJ3Q90fc |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqD3-K3EfbgS2abrB95lDGZOKe4Kb6VtElB0Has3WD_vZeumw4Z6GtJwnG53P2ud_kFoIoIQPlKWNTSlk_rMtY0rEuHKs-wo2GMcAt2_te21-n4b2_iaQms6V0YFCLDlbKiiP_NLmBf47dEJmnNjswzcmIZVhwMrsaybxrdqe815udO6siYJyOYmJH5_FrARKMom49G8864iDC3W_-XbRs2SzRJbibbvwNLOtmFjR8cg3vw-JxK9Sn7RCaKlA4uTUhetMsS0-ZBn74vD5CHtMtIa6wGKVoWaY5KyyQN85tnnOXZPrzcNnuNFi1fUaAS04Gcuq4QOtYi4hIhKhOhY3EpolgKXte-Yk7E7VA5LPZY6MRWzCNPIUhyuQw9hQCLH0AlSRN9CES5AvET82xMbOtaGW4vKRnX3PVtBHbyCKqoiqA8BVlQFLiZHZT6CUr9HEFtqvQgKpnIzYMYH4snXM0m9CckHIuHXk53McCDYqofMtHpMAswdzJkaQjQjv8m5gWstXoP7aB917k_gXVmmlksjzLvFCr5YKjPYDUa5e_Z4LywwS9zdNl1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46RfTBuzivEfbgS7RN1ksex9yYOOdwKnsraZOCoO1Yu8H-vSddNh0yEF9LE8Lpd3K-05PzBaEKMADpS24RS1k-qYpYkbAqHCI9rY4GMcIt1Pnf2l6n4_f7vGuawnQvDCwig5myooivvXogY6MwYN_C80Qk6Y0d6avk-CpacyCca3TX6r3Z_qsh6E5ryZArA6GYC_r8mkBHpChbjEiLG3IRZZo7_1vfLto2rBLXpjDYQysq2UdbP7QGD9DTcyrkpxhgkUhsNro0wXlxbBbr4x6k-91EgB_THsWtiRymgDDcGBuE4rr-3TPJ8uwQvTYbL_UWMbcpEAFpQU5cl3MVKx4xAVSV8tCxmOBRLDirKl9SJ2J2KB0aezR0YitmkSfBui4ToSeBaLEjVErSRB0jLF0OPIp6NiS4VSW1xpcQlCnm-jYQPFFGFTBFYLwhC4pCN7UDY5_A2KeMbmaGDyKjSK4vxvhYPuB6PmAwFeNY_urV7EsG4DC6CiISlY6yAHIoLZoGRO3kb8u8RBvdu2bQvu88nKJNqs-0WB6h3hkq5cOROkfr0Th_z4YXBQy_AI1n2-8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roadmap+and+Direction+toward+High-Performance+MoS2+Hydrogen+Evolution+Catalysts&rft.jtitle=ACS+nano&rft.au=Cao%2C+Yang&rft.date=2021-07-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=7&rft.spage=11014&rft.epage=11039&rft_id=info:doi/10.1021%2Facsnano.1c01879&rft.externalDocID=e41434261 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |