Testing Framework for Black-box AI Models

With widespread adoption of AI models for important decision making, ensuring reliability of such models remains an important challenge. In this paper, we present an end-to-end generic framework for testing AI Models which performs automated test generation for different modalities such as text, tab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) s. 81 - 84
Hlavní autoři: Aggarwal, Aniya, Shaikh, Samiulla, Hans, Sandeep, Haldar, Swastik, Ananthanarayanan, Rema, Saha, Diptikalyan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2021
Témata:
ISBN:1665412194, 9781665412193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With widespread adoption of AI models for important decision making, ensuring reliability of such models remains an important challenge. In this paper, we present an end-to-end generic framework for testing AI Models which performs automated test generation for different modalities such as text, tabular, and time-series data and across various properties such as accuracy, fairness, and robustness. Our tool has been used for testing industrial AI models and was very effective to uncover issues present in those models. Demo video link-https://youtu.be/984UCU17YZI
ISBN:1665412194
9781665412193
DOI:10.1109/ICSE-Companion52605.2021.00041