Percolation theory using Python

This course-based open access textbook delves into percolation theory, examining the physical properties of random media—materials characterized by varying sizes of holes and pores. The focus is on both the mathematical foundations and the computational and statistical methods used in this field. De...

Full description

Saved in:
Bibliographic Details
Main Author: Malthe-Sørenssen, Anders
Format: eBook Book
Language:English
Published: Cham Springer 2024
Springer Nature
Springer International Publishing
Springer International Publishing AG
Edition:1
Series:Lecture Notes in Physics
Subjects:
ISBN:3031598997, 9783031598999, 3031599004, 9783031599002
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This course-based open access textbook delves into percolation theory, examining the physical properties of random media—materials characterized by varying sizes of holes and pores. The focus is on both the mathematical foundations and the computational and statistical methods used in this field. Designed as a practical introduction, the book places particular emphasis on providing a comprehensive set of computational tools necessary for studying percolation theory. Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes. The book's structure ensures a complete exploration of worked examples, encompassing theory, modeling, implementation, analysis, and the resulting connections between theory and analysis. Beginning with a simplified model system—a model porous medium—whose mathematical theory is well-established, the book subsequently applies the same framework to realistic random systems. Key topics covered include one- and infinite-dimensional percolation, clusters, scaling theory, diffusion in disordered media, and dynamic processes. Aimed at graduate students and researchers, this textbook serves as a foundational resource for understanding essential concepts in modern statistical physics, such as disorder, scaling, and fractal geometry.
AbstractList This course-based open access textbook delves into percolation theory, examining the physical properties of random media—materials characterized by varying sizes of holes and pores. The focus is on both the mathematical foundations and the computational and statistical methods used in this field. Designed as a practical introduction, the book places particular emphasis on providing a comprehensive set of computational tools necessary for studying percolation theory. Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes. The book's structure ensures a complete exploration of worked examples, encompassing theory, modeling, implementation, analysis, and the resulting connections between theory and analysis. Beginning with a simplified model system—a model porous medium—whose mathematical theory is well-established, the book subsequently applies the same framework to realistic random systems. Key topics covered include one- and infinite-dimensional percolation, clusters, scaling theory, diffusion in disordered media, and dynamic processes. Aimed at graduate students and researchers, this textbook serves as a foundational resource for understanding essential concepts in modern statistical physics, such as disorder, scaling, and fractal geometry.
This course-based open access textbook delves into percolation theory, examining the physical properties of random media—materials characterized by varying sizes of holes and pores. The focus is on both the mathematical foundations and the computational and statistical methods used in this field. Designed as a practical introduction, the book places particular emphasis on providing a comprehensive set of computational tools necessary for studying percolation theory. Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes. The book's structure ensures a complete exploration of worked examples, encompassing theory, modeling, implementation, analysis, and the resulting connections between theory and analysis. Beginning with a simplified model system—a model porous medium—whose mathematical theory is well-established, the book subsequently applies the same framework to realistic random systems. Key topics covered include one- and infinite-dimensional percolation, clusters, scaling theory, diffusion in disordered media, and dynamic processes. Aimed at graduate students and researchers, this textbook serves as a foundational resource for understanding essential concepts in modern statistical physics, such as disorder, scaling, and fractal geometry.
Author Malthe-Sørenssen, Anders
Author_xml – sequence: 1
  fullname: Malthe-Sørenssen, Anders
BackLink https://cir.nii.ac.jp/crid/1130584002143860882$$DView record in CiNii
BookMark eNpFkD1PwzAQho34ELT0ByAh0YGBJXA-O449MEBVPqRKdECsluM6bSDYxUmH_ntcAmLx-dXz-j3fDciBD94RckbhmgIUN6qQGcuA0SxXCiDDPTJgSf4ovv8npFLFERlQzhmXUjI8JqO2fQcAhlQK4CfkYu6iDY3p6uDH3cqFuB1v2tovx_Nttwr-lBxWpmnd6LcOydvD9HXylM1eHp8nd7PMMMiVyBYlhTwXJShF0QhRSreo-K6Ls-hQCcoVWOsqa6FSQli0IPJUqCzAsIoNyVUfvI7ha-PaTrsyhA_rfBdNo6f3kzQRpp_LZD3_tbrYuGXQO2Or8zQVkzzh2x4Hs3Zer2P9aeJWB1Prpi5jf9-REJcaIb0DTVHkhVbIUPzH965FMH0-5chRJXzZY1_X2ta7k9K0BMkBkHKW9iolsm9h5HcE
ContentType eBook
Book
DBID RYH
V1H
A7I
YSPEL
DOI 10.1007/978-3-031-59900-2
DatabaseName CiNii Complete
DOAB: Directory of Open Access Books
OAPEN
Perlego
DatabaseTitleList


Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 3031599004
9783031599002
Edition 1
ExternalDocumentID EBC31520038
5032384
oai_library_oapen_org_20_500_12657_92326
142429
BD0973673X
Genre Electronic books
GroupedDBID A7I
AABBV
AAHEH
AAKKN
AALJR
AAQKC
ABEEZ
ABHYI
ABLGM
ACAOZ
ADZDO
AEKFX
AGWHU
AIDTZ
AIQUZ
ALMA_UNASSIGNED_HOLDINGS
ALNDD
BBABE
IEZ
LDQ
RYH
SBO
TPJZQ
V1H
ACBYE
YSPEL
ID FETCH-LOGICAL-a30596-db10556b09912a66b8edf42186ec2e2961490ccefcc0f966c2c0656c21870a3f3
IEDL.DBID A7I
ISBN 3031598997
9783031598999
3031599004
9783031599002
IngestDate Thu Sep 04 04:35:34 EDT 2025
Tue Dec 02 18:36:55 EST 2025
Mon Dec 01 21:27:40 EST 2025
Tue Oct 07 21:09:21 EDT 2025
Thu Jun 26 23:03:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QC174.7-175.36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a30596-db10556b09912a66b8edf42186ec2e2961490ccefcc0f966c2c0656c21870a3f3
Notes Includes bibliographical references (pages 209-210) and index
Content Type: text (ncrcontent), Media Type: unmediated (ncrmedia), Carrier Type: volume (ncrcarrier)
OCLC 1443488832
OpenAccessLink https://library.oapen.org/handle/20.500.12657/92326
PQID EBC31520038
PageCount 214
ParticipantIDs proquest_ebookcentral_EBC31520038
perlego_books_5032384
oapen_primary_oai_library_oapen_org_20_500_12657_92326
oapen_doabooks_142429
nii_cinii_1130584002143860882
PublicationCentury 2000
PublicationDate c2024
[2024]
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Lecture Notes in Physics
PublicationYear 2024
Publisher Springer
Springer Nature
Springer International Publishing
Springer International Publishing AG
Publisher_xml – name: Springer
– name: Springer Nature
– name: Springer International Publishing
– name: Springer International Publishing AG
SSID ssj0003218604
Score 2.429282
Snippet This course-based open access textbook delves into percolation theory, examining the physical properties of random media—materials characterized by varying...
SourceID proquest
perlego
oapen
nii
SourceType Publisher
SubjectTerms anomalous diffusion
Applied physics
Condensed matter physics (liquid state and solid state physics)
critical phenomena in statistical physics
Cybernetics and systems theory
disordered systems
Engineering applications of electronic, magnetic, optical materials
fractal models
Geophysics
Information theory
Materials / States of matter
Materials science
Mathematical physics
Mathematics and Science
Mechanical engineering and materials
Percolation (Statistical physics)
Physics
Python (Computer program language)
random media textbook
Reference, Information and Interdisciplinary subjects
Research and information: general
scaling theory
SCIENCE
Statistical physics
Technology, Engineering, Agriculture, Industrial processes
TableOfContents Intro -- Preface -- Contents -- 1 Introduction to Percolation -- 1.1 Basic Concepts in Percolation -- 1.2 Percolation Probability -- 1.3 Spanning Cluster -- 1.4 Percolation in Small Systems -- 1.5 Further Reading -- Exercises -- 2 One-Dimensional Percolation -- 2.1 Percolation Probability -- 2.2 Cluster Number Density -- Definition of Cluster Number Density -- Measuring the Cluster Number Density -- Shape of the Cluster Number Density -- Numerical Measurement of the Cluster Number Density -- Average Cluster size -- 2.3 Spanning Cluster -- 2.4 Correlation Length -- Exercises -- 3 Infinite-Dimensional Percolation -- 3.1 Percolation Threshold -- 3.2 Spanning Cluster -- 3.3 Average Cluster Size -- 3.4 Cluster Number Density -- Exercises -- 4 Finite-Dimensional Percolation -- 4.1 Cluster Number Density -- Numerical Estimation of n(s,p) -- Measuring Probability Densities of Rare Events -- Measurements of n(s,p) When p →pc -- Scaling Theory for n(s,p) -- Scaling Ansatz for 1d Percolation -- Scaling Ansatz for Bethe Lattice -- 4.2 Consequences of the Scaling Ansatz -- Average Cluster Size -- Density of Spanning Cluster -- 4.3 Percolation Thresholds -- Exercises -- 5 Geometry of Clusters -- 5.1 Geometry of Finite Clusters -- Analytical Results in One Dimension -- Numerical Results in Two Dimensions -- Scaling Behavior in Two Dimensions -- 5.2 Characteristic Cluster Size -- Average Radius of Gyration -- Correlation Length -- 5.3 Geometry of the Spanning Cluster -- 5.4 Spanning Cluster Above pc -- Exercises -- 6 Finite Size Scaling -- 6.1 General Aspects of Finite Size Scaling -- 6.2 Finite Size Scaling of P(p,L) -- 6.3 Average Cluster Size -- Measuring Moments of the Cluster Number Density -- Scaling Theory for S(p,L) -- 6.4 Percolation Threshold -- Measuring the Percolation Probability Π(p,L) -- Measuring the Percolation Threshold pc
Finite-Size Scaling Theory for Π(p,L) -- Estimating pc Using the Scaling Ansatz -- Estimating pc and ν Using the Scaling Ansatz -- Exercises -- 7 Renormalization -- 7.1 The Renormalization Mapping -- Iterating the Renormalization Mapping -- 7.2 Examples -- Example: One-Dimensional Percolation -- Example: One-Dimensional Percolation -- Example: Renormalization on 2d Site Lattice -- Example: Renormalization on 2d Site Lattice -- Example: Renormalization on 2d Triangular Lattice -- Example: Renormalization on 2d Triangular Lattice -- Example: Renormalization on 2d Bond Lattice -- Example: Renormalization on 2d Bond Lattice -- Exercises -- 8 Subset Geometry -- 8.1 Singly Connected Bonds -- 8.2 Self-Avoiding Paths on the Cluster -- Minimal Path -- Maximum and Average Path -- Backbone -- Scaling of the Dangling Ends -- Argument for the Scaling of Subsets -- Blob Model for the Spanning Cluster -- Mass-Scaling Exponents for Subsets of the Spanning Clusters -- 8.3 Renormalization Calculation -- 8.4 Deterministic Fractal Models -- 8.5 Lacunarity -- Exercises -- 9 Flow in Disordered Media -- 9.1 Introduction to Disorder -- 9.2 Conductivity and Permeability -- Electrical Conductivity and Resistor Networks -- Flow Conductivity of a Porous System -- 9.3 Conductance of a Percolation Lattice -- Finding the Conductance of the System -- Computational Methods -- Measuring the Conductance -- Conductance and the Density of the Spanning Cluster -- 9.4 Scaling Arguments for Conductance and Conductivity -- Scaling Argument for p&gt -- pc and L ξ -- Conductance of the Spanning Cluster -- Conductivity for p&gt -- pc -- 9.5 Renormalization Calculation -- 9.6 Finite Size Scaling -- Finite-Size Scaling Observations -- 9.7 Internal Distribution of Currents -- 9.8 Real Conductivity -- Exercises -- 10 Elastic Properties of Disordered Media -- 10.1 Rigidity Percolation
Developing a Theory for E(p,L) -- Compliance of the Spanning Cluster at p = pc -- Finding Young's Modulus E(p,L) -- 11 Diffusion in Disordered Media -- 11.1 Diffusion and Random Walks in Homogeneous Media -- Theory for the Time Development of a Random Walk -- Continuum Description of a Random Walker -- 11.2 Random Walks on Clusters -- Developing a Program to Study Random Walks on Clusters -- Diffusion on a Finite Cluster for p&lt -- pc -- Diffusion at p = pc -- Diffusion for p&gt -- pc -- Scaling Theory -- Diffusion on the Spanning Cluster -- The Diffusion Constant D -- Exercises -- 12 Dynamic Processes in Disordered Media -- 12.1 Introduction -- 12.2 Diffusion Fronts -- 12.3 Invasion Percolation -- Gravity Stabilization -- Gravity Destabilization -- References -- Index
Title Percolation theory using Python
URI https://cir.nii.ac.jp/crid/1130584002143860882
https://directory.doabooks.org/handle/20.500.12854/142429
https://library.oapen.org/handle/20.500.12657/92326
https://www.perlego.com/book/5032384/percolation-theory-using-python-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=31520038
Volume 1029
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwGG0UNPHkL4yoKCZeS7p2G-1RCQQTQzgYwq0pbZdwAQJo4n_vazfQxJuXLd2XdNv3det7_fE-Qp4QZwPUAKZaiBlNnU2oVDyjHlgjc6JwPIr6TN66o5GcTtW42se9-Rm76CwN2HycyS_VBkDSOxkLYgg5KDxQCc8PST3nXAXG9dx93Q-siJBliYV0TiJkMFAgFN19QTFWqgHKvVH9LsPOd3OflfysoLDQaKIcPdBiPg_JkcLzATOv_Br0fvnnTx67p8Hpv17sjNR92OlwTg784oIcx7WgdnNJHsZ-jeYRQ9Yu9-6348qC9vgrKA00yGTQf-8NaZVHgRoRsutQN4tpMGdAgwk3eT6T3hVp8JO33HOFLloxa31hLSvAfyy3QCY4JfiajSjEFaktlgt_TdpCOmeyxEphVcoZwIKxTFongdyM42mTtOAgbefhmKCDBMCJumwCQQGab5JG9IB2SxNoxEaHrXZcNUleXl-VIhs6yF5XPtOlBT7TnGk4S0dn6egsVFjFQJf1ZWgBQuJBHncR0XHeuVrsqvsvPUQ6rMmTN_-96S05wbun5VDMHalt1x--RY7s53a-Wd_H9ojjJBl-A3k70I8
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Percolation+theory+using+Python&rft.au=Malthe-S%C3%B8renssen%2C+Anders&rft.date=2024-01-01&rft.pub=Springer&rft.isbn=9783031598999&rft_id=info:doi/10.1007%2F978-3-031-59900-2&rft.externalDocID=BD0973673X
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fingram_csplus_gexhsuob%2F9783031599002.jpg