AMUSE a minimally-unsatisfiable subformula extractor

This paper describes a new algorithm for extracting unsatisfiable subformulas from a given unsatisfiable CNF formula. Such unsatisfiable "cores" can be very helpful in diagnosing the causes of infeasibility in large systems. Our algorithm is unique in that it adapts the "learning proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2004 41st Conference Design Automation S. 518 - 523
Hauptverfasser: Oh, Yoonna, Mneimneh, Maher N., Andraus, Zaher S., Sakallah, Karem A., Markov, Igor L.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 07.06.2004
IEEE
Association for Computing Machinery
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:1581138288, 9781581138283, 1511838288
ISSN:0738-100X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a new algorithm for extracting unsatisfiable subformulas from a given unsatisfiable CNF formula. Such unsatisfiable "cores" can be very helpful in diagnosing the causes of infeasibility in large systems. Our algorithm is unique in that it adapts the "learning process" of a modern SAT solver to identify unsatisfiable subformulas rather than search for satisfying assignments. Compared to existing approaches, this method can be viewed as a bottom-up core extraction procedure which can be very competitive when the core sizes are much smaller than the original formula size. Repeated runs of the algorithm with different branching orders yield different cores. We present experimental results on a suite of large automotive benchmarks showing the performance of the algorithm and highlighting its ability to locate not just one but several cores.
Bibliographie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:1581138288
9781581138283
1511838288
ISSN:0738-100X
DOI:10.1145/996566.996710