Slip-Spring Hybrid Particle-Field Molecular Dynamics for Coarse-Graining Branched Polymer Melts: Polystyrene Melts as an Example

The topology of chains significantly modifies the dynamical properties of polymer melts. Here, we extend a recently developed efficient simulation method, namely the slip-spring hybrid particle-field (SS-hPF) model, to study the structural and dynamical properties of branched polymer melts over larg...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation Vol. 18; no. 6; p. 3814
Main Authors: Wu, Zhenghao, Müller-Plathe, Florian
Format: Journal Article
Language:English
Published: United States 14.06.2022
ISSN:1549-9626, 1549-9626
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The topology of chains significantly modifies the dynamical properties of polymer melts. Here, we extend a recently developed efficient simulation method, namely the slip-spring hybrid particle-field (SS-hPF) model, to study the structural and dynamical properties of branched polymer melts over large spatial-temporal scales. In the coarse-grained SS-hPF simulation of polymers, the bonded potentials are derived by iterative Boltzmann inversion from the underlying fine-grained model. The nonbonded potentials are computed from a density functional field instead of pairwise interactions used in standard molecular dynamics simulations, which increases the computational efficiency by a factor of 10-20. The entangled dynamics is lost due to the soft-core nature of density functional field interactions. It is recovered by a multichain slip-spring model that is rigorously parametrized from existing experimental or simulation data. To quantitatively predict the relaxation and diffusion of branched polymers, which are dominated by arm retraction rather than chain reptation, the slip-spring algorithm is augmented to improve the polymer dynamics near the branch point. Multiple dynamical observables, e.g., diffusion coefficients, arm relaxations, and tube survival probabilities, are characterized in an example coarse-grained model of symmetric and asymmetric star-shaped polystyrene melts. Consistent dynamical behaviors are identified and compared with theoretical predictions. With a single rescaling factor, the prediction of diffusion coefficients agrees well with the available experimental measurements. In this work, an efficient approach is provided to build chemistry-specific coarse-grained models for predicting the dynamics of branched polymers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9626
1549-9626
DOI:10.1021/acs.jctc.2c00107