FSPA: An FeFET-based Sparse Matrix-Dense Vector Multiplication Accelerator
Sparse matrix-dense vector multiplication (SpMV) is widely used in various applications. The performance of traditional SpMV accelerators is bounded by memory. In-memory computing (IMC) is a promising technique to alleviate the memory bottleneck. The current IMC accelerator cannot support sparse sto...
Saved in:
| Published in: | 2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
09.07.2023
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Sparse matrix-dense vector multiplication (SpMV) is widely used in various applications. The performance of traditional SpMV accelerators is bounded by memory. In-memory computing (IMC) is a promising technique to alleviate the memory bottleneck. The current IMC accelerator cannot support sparse storage format and in-situ floating-point multiplication at the same time. In this paper, we propose FSPA, an ferroelectric field-effect transistor (FeFET) based SpMV accelerator. FSPA integrates novel content-addressable memory (CAM) arrays and multiply-add computation (MAC) arrays to support sparse matrices represented in the floating-point format. FSPA achieves significant speedups and energy savings over CPU, GPU and two state-of-the-art IMC accelerators. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247895 |