Automatic End-to-End Joint Optimization for Kernel Compilation on DSPs

Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The performances for DSP kernels rely heavily on compilations and handwritten optimizations. Hand-crafted methods suffer from heavy burden on progra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Zhao, Xiaolei, Chen, Zhaoyun, Shi, Yang, Wen, Mei, Zhang, Chunyun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The performances for DSP kernels rely heavily on compilations and handwritten optimizations. Hand-crafted methods suffer from heavy burden on programmers, while state-of-the-art automatic compilation methods always focus more on a certain aspect (tiling or auto-vectorization), lacking of global and sequential vision on the intact compilation optimization process. It still requires empirical adjustments by programmers in the actual scenario.In order to release programmers from kernel tuning, we propose JOKer, an automatic end-to-end multi-level code generator for kernel joint optimization on DSPs. JOKer integrates means of optimizations in compiling process and provides an end-to-end workflow for performance tuning. It explores compilation configurations through a reinforcement learning based agent for global optimal solution and generates high performance kernel codes for DSPs automatically.
DOI:10.1109/DAC56929.2023.10247901