Late Breaking Results From Hybrid Design Automation for Field-coupled Nanotechnologies
Recent breakthroughs in atomically precise manufacturing are paving the way for Field-coupled Nanocomputing (FCN) to become a real-world post-CMOS technology. This drives the need for efficient and scalable physical design automation methods. However, due to the problem's NP-completeness, exist...
Uloženo v:
| Vydáno v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 2 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
09.07.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recent breakthroughs in atomically precise manufacturing are paving the way for Field-coupled Nanocomputing (FCN) to become a real-world post-CMOS technology. This drives the need for efficient and scalable physical design automation methods. However, due to the problem's NP-completeness, existing solutions either generate designs of high quality, but are not scalable, or generate designs in negligible time but of poor quality. In an attempt to balance scalability and quality, we created and evaluated a hybrid approach that combines the best of established design methods and deep reinforcement learning. This paper summarizes the obtained results. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247933 |