Contention-Free Configured Grant Scheduling for 5G URLLC Traffic

5G networks are being designed to support ultra reliable and low latency communication (URLLC) services in many real-time industrial applications. The conventional grant-based dynamic scheduling can hardly fulfill the URLLC requirements due to the non-negligible transmission delays introduced during...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Zhang, Tianyu, Hu, Xiaobo Sharon, Han, Song
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:5G networks are being designed to support ultra reliable and low latency communication (URLLC) services in many real-time industrial applications. The conventional grant-based dynamic scheduling can hardly fulfill the URLLC requirements due to the non-negligible transmission delays introduced during the spectrum resource grant process. To address this problem, 5G defines a grant-free transmission scheme, namely configured grant (CG) scheduling, for uplink (UL) traffic to pre-allocate spectrum resource to user equipments (UEs). This paper studies CG scheduling for periodic URLLC traffic with real-time and collision-free guarantees. An exact solution based on Satisfiability Modulo Theory (SMT) is first proposed to generate a feasible CG configuration for a given traffic set. To enhance scalability, we further develop an efficient graph-based heuristic consisting of an offset selection method and a multicoloring algorithm for spectrum resource allocation. Extensive experiments are conducted using 3GPP industrial use cases to show that both approaches can satisfy the real-time and collision-free requirements, and the heuristic can achieve comparable schedulability ratio with the SMT-based approach but require significantly lower running time.
DOI:10.1109/DAC56929.2023.10247842