Specialization meets Flexibility: a Heterogeneous Architecture for High-Efficiency, High-flexibility AR/VR Processing
Emerging AR-VR applications execute complex heterogeneous workloads, mixing Deep-Learning(DL) and Digital-Signal-Processing(DSP) tasks, on SoCs embedded in the frame of eyeglasses, with implied tight power and area constraints, especially in the case of AR. We propose ArchiMEDES, an open-source hete...
Uloženo v:
| Vydáno v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
09.07.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Emerging AR-VR applications execute complex heterogeneous workloads, mixing Deep-Learning(DL) and Digital-Signal-Processing(DSP) tasks, on SoCs embedded in the frame of eyeglasses, with implied tight power and area constraints, especially in the case of AR. We propose ArchiMEDES, an open-source heterogeneous-SoC platform with a programmable cluster of RISC-V cores coupled with a configurable DNN engine (NEureka) targeting AR/VR workloads. ArchiMEDES features a low-overhead Heterogeneous Cluster Interconnect(HCI) to enable fast RISC-V/NEureka cooperation on a shared tightly coupled data memory (TCDM). We show post-layout results targeting 22nm technology; ArchiMEDES shows a peak combined performance of up to 1.19 TOPS and an efficiency of up to 10.6 TOPS/W. Hardware-Software cooperation in ArchiMEDES enables a 5.5× speedup in an AR-VR gaze tracking case study, compared to a non-cooperative single-RISC-V + Accelerator system. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247945 |