GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm with Multiple Inputs

Hardware fuzzing has emerged as a promising automatic verification technique to efficiently discover and verify hardware vulnerabilities. However, hardware fuzzing can be extremely time-consuming due to compute-intensive iterative simulations. While recent research has explored several approaches to...

Full description

Saved in:
Bibliographic Details
Published in:2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6
Main Authors: Lin, Dian-Lun, Zhang, Yanqing, Ren, Haoxing, Khailany, Brucek, Wang, Shih-Hsin, Huang, Tsung-Wei
Format: Conference Proceeding
Language:English
Published: IEEE 09.07.2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hardware fuzzing has emerged as a promising automatic verification technique to efficiently discover and verify hardware vulnerabilities. However, hardware fuzzing can be extremely time-consuming due to compute-intensive iterative simulations. While recent research has explored several approaches to accelerate hardware fuzzing, nearly all of them are limited to single-input fuzzing using one thread of a CPU-based simulator. As a result, we propose Gen-Fuzz, a GPU-accelerated hardware fuzzer using a genetic algorithm with multiple inputs. Measuring experimental results on a real industrial design, we show that GenFuzz running on a single A6000 GPU and eight CPU cores achieves 80× runtime speed-up when compared to state-of-the-art hardware fuzzers.
DOI:10.1109/DAC56929.2023.10247942