Automated Design of Complex Analog Circuits with Multiagent based Reinforcement Learning

Despite the effort of analog circuit design automation, currently complex analog circuit design still requires extensive manual iterations, making it labor intensive and time-consuming. Recently, reinforcement learning (RL) algorithms have been demonstrated successfully for the analog circuit design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 60th ACM/IEEE Design Automation Conference (DAC) S. 1 - 6
Hauptverfasser: Zhang, Jinxin, Bao, Jiarui, Huang, Zhangcheng, Zeng, Xuan, Lu, Ye
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 09.07.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Despite the effort of analog circuit design automation, currently complex analog circuit design still requires extensive manual iterations, making it labor intensive and time-consuming. Recently, reinforcement learning (RL) algorithms have been demonstrated successfully for the analog circuit design optimization. However, a robust and highly efficient RL method to design analog circuits with complex design space has not been fully explored yet. In this work, inspired by multiagent planning theory as well as human expert design practice, we propose a multiagent based RL (MA-RL) framework to tackle this issue. Particularly, we (i) partition the complex analog circuits into several sub-blocks based on topology information and effectively reduce the complexity of design search space; (ii) leverage MA-RL for the circuit optimization, where each agent corresponds to a single sub-block, and the interactions between agents delicately mimic the best design tradeoffs between circuit sub-blocks by human experts; (iii) introduce the multiagent twin-delayed techniques to further boost training stability and accomplish higher performances. Experiments on two different analog circuit topologies and knowledge transfers between two technology nodes are demonstrated. It's shown that MA-RL framework can achieve the best FoM for complex analog circuits design. This work shines the light for future large scale analog circuit system design automation.
AbstractList Despite the effort of analog circuit design automation, currently complex analog circuit design still requires extensive manual iterations, making it labor intensive and time-consuming. Recently, reinforcement learning (RL) algorithms have been demonstrated successfully for the analog circuit design optimization. However, a robust and highly efficient RL method to design analog circuits with complex design space has not been fully explored yet. In this work, inspired by multiagent planning theory as well as human expert design practice, we propose a multiagent based RL (MA-RL) framework to tackle this issue. Particularly, we (i) partition the complex analog circuits into several sub-blocks based on topology information and effectively reduce the complexity of design search space; (ii) leverage MA-RL for the circuit optimization, where each agent corresponds to a single sub-block, and the interactions between agents delicately mimic the best design tradeoffs between circuit sub-blocks by human experts; (iii) introduce the multiagent twin-delayed techniques to further boost training stability and accomplish higher performances. Experiments on two different analog circuit topologies and knowledge transfers between two technology nodes are demonstrated. It's shown that MA-RL framework can achieve the best FoM for complex analog circuits design. This work shines the light for future large scale analog circuit system design automation.
Author Zhang, Jinxin
Huang, Zhangcheng
Zeng, Xuan
Lu, Ye
Bao, Jiarui
Author_xml – sequence: 1
  givenname: Jinxin
  surname: Zhang
  fullname: Zhang, Jinxin
  organization: School of Information Science and Technology,State Key Lab. of ASIC & System
– sequence: 2
  givenname: Jiarui
  surname: Bao
  fullname: Bao, Jiarui
  organization: School of Information Science and Technology,State Key Lab. of ASIC & System
– sequence: 3
  givenname: Zhangcheng
  surname: Huang
  fullname: Huang, Zhangcheng
  email: huangzc@fudan.edu.cn
  organization: Frontier Institute of Chip and System
– sequence: 4
  givenname: Xuan
  surname: Zeng
  fullname: Zeng, Xuan
  email: xzeng@fudan.edu.cn
  organization: Fudan University,State Key Lab. of ASIC & System, Microelectronics Department,Shanghai,China
– sequence: 5
  givenname: Ye
  surname: Lu
  fullname: Lu, Ye
  email: lu_ye@fudan.edu.cn
  organization: School of Information Science and Technology,State Key Lab. of ASIC & System
BookMark eNo1kNtKxDAYhCMoqOu-gUheoGuaNIf_snQ9QUUQBe-WpPlbA226tFnUt7eiXg3MfDMXc06O4xiRkKucbfKcwfW2rKQCDhvOuNjkjBcaGByRNWgwQjLBRWHyU7Ke5-CYYtIUTBVn5K08pHGwCT3d4hy6SMeWVuOw7_GTltH2Y0erMDWHkGb6EdI7fTz0KdgOY6LOzkvvGUNsx6nB4cer0U4xxO6CnLS2n3H9pyvyenvzUt1n9dPdQ1XWmeXAUqaY9h6lUapVpgHhG-fy1lmnjWuXQIO3RoLTCyMb4YyXCBY4955pKxqxIpe_uwERd_spDHb62v0fIL4Bvd5VaA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247909
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247909
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shanghai
  funderid: 10.13039/100007219
– fundername: Shanghai Municipal Education Commission
  funderid: 10.13039/501100003395
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-607dde5866f68c93dcbb1fbab78bfde579da859b7e585c3b8d5e9a922dd07a3c3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300217&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-607dde5866f68c93dcbb1fbab78bfde579da859b7e585c3b8d5e9a922dd07a3c3
PageCount 6
ParticipantIDs ieee_primary_10247909
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2784996
Snippet Despite the effort of analog circuit design automation, currently complex analog circuit design still requires extensive manual iterations, making it labor...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analog circuits
Circuit design automation
Circuit stability
Complex analog circuits
Design automation
Manuals
Multiagent reinforcement learning
Reinforcement learning
Topology
Training
Twin delayed deep deterministic policy gradient
Title Automated Design of Complex Analog Circuits with Multiagent based Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10247909
WOSCitedRecordID wos001073487300217&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWB1SeLEj7FqqRhQVSFA3So_LlUl1KA2Qf35nN0UxMDAZsU-RTrb-eLzfd8Rcpdx5zl2saAGxnIFmlljcmaSwstUS2NjwO3tSY7HajrVk5asHrkwABCTz6AXmvEu31euCaEy3OFZLnWg6-1LKbZkrd3iCdd7CE55ywJOE30_7A8KgfDfCyXCezvjX2VUIoqMjv75_mPS_eHj0ck30pyQPViekmm_qSv83wRPhzENg1YlDdv7HTY0aI1UczpYrFyzqNc0hFtpJNuawKWiAbw8fYaom-piiJC2UqvzLnkdPbwMHllbJ4GZTCc1E4nEj1ShhCiFcpp7Z21aWnSzsiV2SO2NKrSVOKZw3CpfgDY6y7xPpOGOn5HOslrCOaFok6I5YlZp8WQJxgoNOKQEbkUu3AXpBrfMPrZSGLOdRy7_eH5FDoPzY36rviadetXADTlwn_VivbqNE_gFT7-fFg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBT2pOPHbHLx2tk3zdRybY-IcQ6bsNvLxOgayjq0V_3yTrFM8ePBWkjwIL01_6cv7_R5CdykxlriuyKuBRZkAGWmlskjF1PJEcqVDwO1twIdDMZnIUU1WD1wYAAjJZ9Dyj-Eu3xam8qEyt8PTjEtP19ulWZbGG7rW9vXxF3wOnrKaB5zE8r7b7lDmDgAtXyS8tTX_VUgl4Ejv8J8zOELNH0YeHn1jzTHagcUJmrSrsnAnTrC4GxIxcJFjv8Hf4RN7tZFihjvzlanm5Rr7gCsOdFvl2VTYw5fFLxCUU00IEuJabHXWRK-9h3GnH9WVEiKVyriMWMzdZ4oKxnImjCTWaJ3k2jla6Nx1cGmVoFJzN4YaooWlIJVMU2tjroghp6ixKBZwhrCzSZy5Q61cu39LUJpJcENyIJplzJyjpnfLdLkRw5huPXLxR_st2u-PnwfTwePw6RId-IUI2a7yCjXKVQXXaM98lPP16iYs5hfC6qJd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Automated+Design+of+Complex+Analog+Circuits+with+Multiagent+based+Reinforcement+Learning&rft.au=Zhang%2C+Jinxin&rft.au=Bao%2C+Jiarui&rft.au=Huang%2C+Zhangcheng&rft.au=Zeng%2C+Xuan&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247909&rft.externalDocID=10247909