A Tensor Algebra Compiler for Sparse Differentiation
Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense tensors, which makes it a challenge to efficiently compute gradients through sparse tensor operations. This is due to irregular sparsity patterns t...
Uložené v:
| Vydané v: | Proceedings / International Symposium on Code Generation and Optimization s. 1 - 12 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
02.03.2024
|
| Predmet: | |
| ISSN: | 2643-2838 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense tensors, which makes it a challenge to efficiently compute gradients through sparse tensor operations. This is due to irregular sparsity patterns that can result in substantial memory and computational overheads. We propose a novel framework that enables the efficient AD of sparse tensors. The key aspects of our work include a compilation pipeline leveraging two intermediate DSLs with AD-agnostic domain-specific optimizations followed by efficient C++ code generation. We showcase the effectiveness of our framework in terms of performance and scalability through extensive experimentation, outperforming state-of-the-art alternatives across a variety of synthetic and real-world datasets. |
|---|---|
| ISSN: | 2643-2838 |
| DOI: | 10.1109/CGO57630.2024.10444787 |