BP-NTT: Fast and Compact in-SRAM Number Theoretic Transform with Bit-Parallel Modular Multiplication
Number Theoretic Transform (NTT) is an essential mathematical tool for computing polynomial multiplication in promising lattice-based cryptography. However, costly division operations and complex data dependencies make efficient and flexible hardware design to be challenging, especially on resource-...
Saved in:
| Published in: | 2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
09.07.2023
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Number Theoretic Transform (NTT) is an essential mathematical tool for computing polynomial multiplication in promising lattice-based cryptography. However, costly division operations and complex data dependencies make efficient and flexible hardware design to be challenging, especially on resource-constrained edge devices. Existing approaches either focus on only limited parameter settings or impose substantial hardware overhead. In this paper, we introduce a hardware-algorithm methodology to efficiently accelerate NTT in various settings using in-cache computing. By leveraging an optimized bit-parallel modular multiplication and introducing costless shift operations, our proposed solution provides up to 29× higher throughput-per-area and 10-138× better throughput-per-power compared to the state-of-the-art. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247691 |