RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-Supervised Reinforcement Learning
Concurrent Clock and Data (CCD) optimization is a well-adopted approach in modern commercial tools that resolves timing violations using a mixture of clock skewing and delay fixing strategies. However, existing CCD algorithms are flawed. Particularly, they fail to prioritize violating endpoints for...
Uložené v:
| Vydané v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
09.07.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Concurrent Clock and Data (CCD) optimization is a well-adopted approach in modern commercial tools that resolves timing violations using a mixture of clock skewing and delay fixing strategies. However, existing CCD algorithms are flawed. Particularly, they fail to prioritize violating endpoints for different optimization strategies correctly, leading to flow-wise globally sub-optimal results. In this paper, we overcome this issue by presenting RL-CCD, a Reinforcement Learning (RL) agent that selects endpoints for useful skew prioritization using the proposed EP-GNN, an endpoint-oriented Graph Neural Network (GNN) model, and a Transformer-based self-supervised attention mechanism. Experimental results on 19 industrial designs in 5 − 12nm technologies demonstrate that RL-CCD achieves up to 64% Total Negative Slack (TNS) reduction and 66.5% number of violating endpoints (NVE) improvement over the native implementation of a commercial tool. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10248008 |