The Smash Product of Monoidal Theories

The tensor product of props was defined by Hackney and Robertson as an extension of the Boardman-Vogt product of operads to more general monoidal theories. Theories that factor as tensor products include the theory of commutative monoids and the theory of bialgebras. We give a topological interpreta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autor: Hadzihasanovic, Amar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The tensor product of props was defined by Hackney and Robertson as an extension of the Boardman-Vogt product of operads to more general monoidal theories. Theories that factor as tensor products include the theory of commutative monoids and the theory of bialgebras. We give a topological interpretation (and vast generalisation) of this construction as a low-dimensional projection of a "smash product of pointed directed spaces". Here directed spaces are embodied by combinatorial structures called diagrammatic sets, while Gray products replace cartesian products. The correspondence is mediated by a web of adjunctions relating diagrammatic sets, pros, probs, props, and Gray-categories. The smash product applies to presentations of higher-dimensional theories and systematically produces higher-dimensional coherence data.
AbstractList The tensor product of props was defined by Hackney and Robertson as an extension of the Boardman-Vogt product of operads to more general monoidal theories. Theories that factor as tensor products include the theory of commutative monoids and the theory of bialgebras. We give a topological interpretation (and vast generalisation) of this construction as a low-dimensional projection of a "smash product of pointed directed spaces". Here directed spaces are embodied by combinatorial structures called diagrammatic sets, while Gray products replace cartesian products. The correspondence is mediated by a web of adjunctions relating diagrammatic sets, pros, probs, props, and Gray-categories. The smash product applies to presentations of higher-dimensional theories and systematically produces higher-dimensional coherence data.
Author Hadzihasanovic, Amar
Author_xml – sequence: 1
  givenname: Amar
  surname: Hadzihasanovic
  fullname: Hadzihasanovic, Amar
  email: amar@cs.ioc.ee
  organization: Tallinn University of Technology,Department of Software Science,Tallinn,Estonia
BookMark eNotj0FLwzAYQCMoqLO_QJCcvLV-35ekSY5SdA4qCpvnkfZLWWVrpJkH_72CO73DgwfvWpxPaYpC3CFUiOAf2lWzNkS1rggIK68tGGvOROGtw7o2Wjtv6ktR5PwJAOQsgvZX4n6zi3J9CHkn3-fE3_1RpkG-pimNHPbyz6Z5jPlGXAxhn2Nx4kJ8PD9tmpeyfVuumse2DOT8seTo2CjjIQy263tHHpxmVgFAKUWdjcjRstN68IzO9AAWNCMROghdpxbi9r87xhi3X_N4CPPP9nSjfgGYb0Ch
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470575
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470575
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-de8d53590af7bcc829084dd3a003332b7e1de7d844f9d185c00704d122180abb3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:23:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-de8d53590af7bcc829084dd3a003332b7e1de7d844f9d185c00704d122180abb3
PageCount 13
ParticipantIDs ieee_primary_9470575
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.210637
Snippet The tensor product of props was defined by Hackney and Robertson as an extension of the Boardman-Vogt product of operads to more general monoidal theories....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Coherence
Computer science
Tensors
Title The Smash Product of Monoidal Theories
URI https://ieeexplore.ieee.org/document/9470575
WOSCitedRecordID wos000947350400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sFT1Vb8Jgfx5LZNNtsk52JRKKVQld5KkkmxoN3SD3-_me1aEbx4C8suS76YN5O89wBu4xLyyqJMkGQAZJbaxAnHE0H22jY2VSGl9DpQw6GeTMyoAvd7LkwIobh8FlrULM7yMfdbKpW1jVQEL6pQVaq742rt6ymE_CPaLUnAvGPag6femNAFVU4Eb5Uf_3JRKYJIv_6_3x9B84eNx0b7OHMMlbA4gfq3HQMrd2cD7uKUs_GHXb_R66TjyvIZi5s2n6N9ZwULP-bFTXjpPzz3HpPSBiGxMRvaJBg0ZmlmOnamnPd08qklYmrJhy2Noxk4BoVaypnBGH49SfhI5CJG7451Lj2F2iJfhDNgKDXnNhMuoh4pTdDdoH2GMSlzIg1dPIcGdXu63CldTMseX_z9-BIOaWTp4pQwV1DbrLbhGg7852a-Xt0U0_MFQWGOGA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmugJFYzf9mA8uUC7XbY9EwnElZCAhhvpdkokUdbw4e-3s6wYEy_ems1usv3KvJn2vQdw65eQjQ3KAEkGQEahCVKR8kCQvbbxzTiXUnpJ4n5fjcd6UIL7LRfGOZdfPnN1auZn-ZjZNZXKGlrGBC92YDeSPu_ZsLW2FRXC_h7vFjRg3tSNpNceEr6g2ong9eLzXz4qeRjpVP73A4dQ--HjscE20hxByc2PofJtyMCK_VmFOz_pbPhulq_0Oim5smzK_LbNZmjeWM7D95lxDZ47D6N2NyiMEALj86FVgE5hFEa6aaZxai2dfSqJGBpyYgv9eDqOLkYl5VSjD8CWRHwkcuHjd9OkaXgC5Xk2d6fAUCrOTSRSj3uk1E61nLIR-rQsFaFr4RlUqduTj43WxaTo8fnfj29gvzt6SiZJr_94AQc0ynSNSuhLKK8Wa3cFe_ZzNVsurvOp-gLal5Ff
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=The+Smash+Product+of+Monoidal+Theories&rft.au=Hadzihasanovic%2C+Amar&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470575&rft.externalDocID=9470575