The Smash Product of Monoidal Theories
The tensor product of props was defined by Hackney and Robertson as an extension of the Boardman-Vogt product of operads to more general monoidal theories. Theories that factor as tensor products include the theory of commutative monoids and the theory of bialgebras. We give a topological interpreta...
Uloženo v:
| Vydáno v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.06.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The tensor product of props was defined by Hackney and Robertson as an extension of the Boardman-Vogt product of operads to more general monoidal theories. Theories that factor as tensor products include the theory of commutative monoids and the theory of bialgebras. We give a topological interpretation (and vast generalisation) of this construction as a low-dimensional projection of a "smash product of pointed directed spaces". Here directed spaces are embodied by combinatorial structures called diagrammatic sets, while Gray products replace cartesian products. The correspondence is mediated by a web of adjunctions relating diagrammatic sets, pros, probs, props, and Gray-categories. The smash product applies to presentations of higher-dimensional theories and systematically produces higher-dimensional coherence data. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470575 |