On the logical structure of choice and bar induction principles
We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of...
Saved in:
| Published in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
29.06.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC ABT of the axiom of dependent choice and dually a generalised bar induction principle GBI ABT such that:GDC ABT intuitionistically captures the strength of*the general axiom of choice expressed as ∀a∃bR(a,b) ⇒ ∃α∀aR(a,α(a))) when T is a filter that derives point-wise from a relation R on A × B without introducing further constraints,*the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set \mathbb{B} (for a constructive definition of prime filter),*the axiom of dependent choice if A = \mathbb{N},*Weak Kőnig's Lemma if A = \mathbb{N} and B = \mathbb{B} (up to weak classical reasoning).GBI ABT intuitionistically captures the strength of*Gödel's completeness theorem in the form validity implies provability for entailment relations if B = \mathbb{B} (for a constructive definition of validity),*bar induction if A = \mathbb{N},*the Weak Fan Theorem if A = \mathbb{N} and B = \mathbb{B}.Contrastingly, even though GDC ABT and GBI ABT smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is {\mathbb{B}^{\mathbb{N}}} and B is \mathbb{N}. |
|---|---|
| AbstractList | We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC ABT of the axiom of dependent choice and dually a generalised bar induction principle GBI ABT such that:GDC ABT intuitionistically captures the strength of*the general axiom of choice expressed as ∀a∃bR(a,b) ⇒ ∃α∀aR(a,α(a))) when T is a filter that derives point-wise from a relation R on A × B without introducing further constraints,*the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set \mathbb{B} (for a constructive definition of prime filter),*the axiom of dependent choice if A = \mathbb{N},*Weak Kőnig's Lemma if A = \mathbb{N} and B = \mathbb{B} (up to weak classical reasoning).GBI ABT intuitionistically captures the strength of*Gödel's completeness theorem in the form validity implies provability for entailment relations if B = \mathbb{B} (for a constructive definition of validity),*bar induction if A = \mathbb{N},*the Weak Fan Theorem if A = \mathbb{N} and B = \mathbb{B}.Contrastingly, even though GDC ABT and GBI ABT smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is {\mathbb{B}^{\mathbb{N}}} and B is \mathbb{N}. |
| Author | Herbelin, Hugo Brede, Nuria |
| Author_xml | – sequence: 1 givenname: Nuria surname: Brede fullname: Brede, Nuria organization: University of Potsdam,Germany – sequence: 2 givenname: Hugo surname: Herbelin fullname: Herbelin, Hugo organization: Université de Paris, CNRS, IRIF,Inria Paris,France |
| BookMark | eNotj8FKxDAURSMoqDP9AkHyA615aZLmrUSKjgOFWeishzR5dSI1HdrOwr-34KzO4sC53Ht2nYZEjD2CKAAEPjXb-kNLaVQhhYQCVSW0LK9YhpUFY7RSFrW5Zdk0fQshpK1AKLxjz7vE5yPxfviK3vV8msezn88j8aHj_jhET9ylwFs38pjC4uKQ-GmMycdTT9Oa3XSunyi7cMX2b6-f9Xve7Dbb-qXJnbQ45wFajdAa6aRpSwXCEVkJBoPsrCKDtlqkxWAqoTpvUFFJARDRmlZoKFfs4b8bieiw7P-48fdwuVn-Ada8Sc0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470523 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 13 |
| ExternalDocumentID | 9470523 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a289t-d1b591b62a26b3410aee82169d2f84e6987b6289d6704fc694e3ed199986b0513 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a289t-d1b591b62a26b3410aee82169d2f84e6987b6289d6704fc694e3ed199986b0513 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9470523 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.2046041 |
| Snippet | We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Bars Computer science Fans |
| Title | On the logical structure of choice and bar induction principles |
| URI | https://ieeexplore.ieee.org/document/9470523 |
| WOSCitedRecordID | wos000947350400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwED2S0KFT2ial32joWCey4uikqUNoaKGkgbaQLcjWGbo4IR_9_TnZTkqhSxcjbITxmbt7etK9A7j3ZJRDjCP2BozYE02UUnkxiUnR5V7mZbMJnEzMbGanDXg41MIQUXn4jHphWO7l-0W2DVRZ3yYYWMwmNBGxqtU68CkB-TParYuAY2n7ry-j94AuAnOi4l49-VcXlTKJjNv_e_0JdH-q8cT0kGdOoUHFGbT37RhE7Z0deHwrBMM5UUczUUnDblckFrngKMchQbjCi9StBK_EK9lYsdyz7esufI6fPkbPUd0fIXK8TNpEPk6HNk61ckqnnI2kI7Z8rK1XuUlIW4P80FivUSZ5pm1CA_JBd8DolJ1xcA6tYlHQBQgbJAI8KmUzwwBLGo966IaoyOXGS3kJnWCP-bKSwJjXprj6-_Y1HAeThxNVyt5Aiz-XbuEo-958rVd35X_bARXZl_s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxxgMjaW038WNiQFStKKUSRepW2fFFYkmrPvj92ElahMTCElmJLCUX3d3nz77vAO4dKm6kZJH3Bhl5T1SRxeKiYmWlyRzNimYTcjRS06ke1-BhVwuDiMXhM2yHYbGX7-bpJlBlHR3LwGLuwX4Sx5yV1Vo7RiVgf493qzJgRnVnOHh6D_gicCectavpv_qoFGmk1_jfCxxD66cej4x3meYEapifQmPbkIFU_tmEx7eceEBHqnhGSnHYzRLJPCM-zvmgQEzuiDVL4tfipXAsWWz59lULPnrPk6d-VHVIiIxfKK0jx2yimRXccGF9PqIGve2Z0I5nKkahlfQPlXZC0jhLhY6xiy4oDyhhvTt2z6Cez3M8B6KDSICTnOtUeYhFlZMiMYnkaDLlKL2AZrDHbFGKYMwqU1z-ffsODvuT1-FsOBi9XMFRMH84X8X1NdT9p-MNHKRf68_V8rb4h98v75tC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=On+the+logical+structure+of+choice+and+bar+induction+principles&rft.au=Brede%2C+Nuria&rft.au=Herbelin%2C+Hugo&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470523&rft.externalDocID=9470523 |