On the logical structure of choice and bar induction principles

We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13
Main Authors: Brede, Nuria, Herbelin, Hugo
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC ABT of the axiom of dependent choice and dually a generalised bar induction principle GBI ABT such that:GDC ABT intuitionistically captures the strength of*the general axiom of choice expressed as ∀a∃bR(a,b) ⇒ ∃α∀aR(a,α(a))) when T is a filter that derives point-wise from a relation R on A × B without introducing further constraints,*the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set \mathbb{B} (for a constructive definition of prime filter),*the axiom of dependent choice if A = \mathbb{N},*Weak Kőnig's Lemma if A = \mathbb{N} and B = \mathbb{B} (up to weak classical reasoning).GBI ABT intuitionistically captures the strength of*Gödel's completeness theorem in the form validity implies provability for entailment relations if B = \mathbb{B} (for a constructive definition of validity),*bar induction if A = \mathbb{N},*the Weak Fan Theorem if A = \mathbb{N} and B = \mathbb{B}.Contrastingly, even though GDC ABT and GBI ABT smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is {\mathbb{B}^{\mathbb{N}}} and B is \mathbb{N}.
AbstractList We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill- and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC ABT of the axiom of dependent choice and dually a generalised bar induction principle GBI ABT such that:GDC ABT intuitionistically captures the strength of*the general axiom of choice expressed as ∀a∃bR(a,b) ⇒ ∃α∀aR(a,α(a))) when T is a filter that derives point-wise from a relation R on A × B without introducing further constraints,*the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set \mathbb{B} (for a constructive definition of prime filter),*the axiom of dependent choice if A = \mathbb{N},*Weak Kőnig's Lemma if A = \mathbb{N} and B = \mathbb{B} (up to weak classical reasoning).GBI ABT intuitionistically captures the strength of*Gödel's completeness theorem in the form validity implies provability for entailment relations if B = \mathbb{B} (for a constructive definition of validity),*bar induction if A = \mathbb{N},*the Weak Fan Theorem if A = \mathbb{N} and B = \mathbb{B}.Contrastingly, even though GDC ABT and GBI ABT smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is {\mathbb{B}^{\mathbb{N}}} and B is \mathbb{N}.
Author Herbelin, Hugo
Brede, Nuria
Author_xml – sequence: 1
  givenname: Nuria
  surname: Brede
  fullname: Brede, Nuria
  organization: University of Potsdam,Germany
– sequence: 2
  givenname: Hugo
  surname: Herbelin
  fullname: Herbelin, Hugo
  organization: Université de Paris, CNRS, IRIF,Inria Paris,France
BookMark eNotj8FKxDAURSMoqDP9AkHyA615aZLmrUSKjgOFWeishzR5dSI1HdrOwr-34KzO4sC53Ht2nYZEjD2CKAAEPjXb-kNLaVQhhYQCVSW0LK9YhpUFY7RSFrW5Zdk0fQshpK1AKLxjz7vE5yPxfviK3vV8msezn88j8aHj_jhET9ylwFs38pjC4uKQ-GmMycdTT9Oa3XSunyi7cMX2b6-f9Xve7Dbb-qXJnbQ45wFajdAa6aRpSwXCEVkJBoPsrCKDtlqkxWAqoTpvUFFJARDRmlZoKFfs4b8bieiw7P-48fdwuVn-Ada8Sc0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470523
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470523
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a289t-d1b591b62a26b3410aee82169d2f84e6987b6289d6704fc694e3ed199986b0513
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-d1b591b62a26b3410aee82169d2f84e6987b6289d6704fc694e3ed199986b0513
PageCount 13
ParticipantIDs ieee_primary_9470523
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.2046041
Snippet We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bars
Computer science
Fans
Title On the logical structure of choice and bar induction principles
URI https://ieeexplore.ieee.org/document/9470523
WOSCitedRecordID wos000947350400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFT2ialbzR0rBNLkSVr6hAaWghpoC1kC3qcoIsT8ujvr2Q7LoUu3YyMET5zd9991n0HcI_ZKNM0OJK3mUu41jwxNHWJTY03NlMsd6WI61TOZvlioeYteGh6YRCxPHyGg3hZ_st3K7uPVNlQcRlZzDa0pZRVr1bDp0TkH9Bu3QRMUzWcvozfIrqIzAmjg_rhX1NUyiQy6f5v-xPo_3TjkXmTZ06hhcUZdA_jGEjtnT14fC1IgHOkjmakkobdb5CsPAlRLoQEogtHjN6QUIlXsrFkfWDbt334mDy9j5-Tej5CokOZtEscNZmiRjDNhAnZKNWIOaNCOeZzjkLlMtzMlRMy5d4KxXGELuoO5MIEZxydQ6dYFXgBxCnmkKfaCfShZPLaYGoCmLDChwxnxSX0oj2W60oCY1mb4urv5Ws4jiaPJ6qYuoFOeF28hSP7tfvcbu7K7_YNN9uZGA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfRUtRXf7sGjabPbzSZ78iCWFmstWKG3so9Z8JKWPvz97iZpRfDiLWwIbCbMzDdfdr4BuMekmyjqHcmZxEZcKR5pGtvIxNppk0iW2ULEdZiORtl0Ksc1eNj1wiBicfgM2-Gy-Jdv52YTqLKO5GlgMfdgP-Gc0bJba8eoBOzv8W7VBkxj2RkOnt4DvgjcCaPt6vFfc1SKNNJr_G8Dx9D66ccj412mOYEa5qfQ2A5kIJV_NuHxLSce0JEqnpFSHHazRDJ3xMc5HxSIyi3Rakl8LV4Kx5LFlm9fteCj9zx56kfVhIRI-UJpHVmqE0m1YIoJ7fNRrBAzRoW0zGUchcxSfzOTVqQxd0ZIjl20QXkgE9q7Y_cM6vk8x3MgVjKLPFZWoPNFk1MaY-3hhBHO5zgjLqAZ7DFblCIYs8oUl38v38Fhf_I6nA0Ho5crOArmD-ermLyGun91vIED87X-XC1vi2_4DWAZnF8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=On+the+logical+structure+of+choice+and+bar+induction+principles&rft.au=Brede%2C+Nuria&rft.au=Herbelin%2C+Hugo&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470523&rft.externalDocID=9470523